

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

Certain Notions of Neutroscopic Pythogorean K-Subalgebras

S.Ramesh Kumar ${ }^{1}$, S. Poorani ${ }^{2}$, R. Radha ${ }^{3}$
${ }^{1}$ Department of Mathematics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. ${ }^{2}$ Research Scholoar, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. ${ }^{3}$ Research Scholoar, Nirmala College for women, Coimbatore, Tamil Nadu, India.

Abstract

We apply the notion of neutrosophic Pythagorean sets to K-algebras. We develop the concept of neutrosophic pythogorean K-sub algebras, and present some of their properties. Moreover, we study the behavior of valued neutrosophic pythogorean K-sub algebras under homomorphism.

Keywords: neutrosophic pythogorean sets, K-sub algebras, homomorphism.

Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram [9]. A K algebra was built on a group G by adjoining the induced binary operation on G. The group G is particularly of the type in which each non-identity element is not of order 2. This algebraic structure is, in general, non-commutative and non-associative with right identity element [5, 10, 11]. Akram et.al [2-4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy setting frames by applying Zadeh's fuzzy set theory and its generalizations, namely, interval- valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and vague sets.
In handling information regarding various aspects of uncertainty, non-classical logic (a great extension and development of classical logic) is considered to be more powerful technique than the classical logic. The non- classical logic has nowadays become a useful tool in computer science. Moreover, non-classical logic deals with fuzzy information and uncertainty. In 1998, Smarandache [15] introduced neutrosophic sets as a generalization of fuzzy sets [19] and intuitionistic fuzzy sets [6]. A neutrosophic set is identified by three functions called truth- membership (T), indeterminacymembership (I) and falsity-membership (F) whose values are real standard or non-standard subset of unit interval $]^{-} 0,1^{+}\left[\right.$, where ${ }^{-} 0=0 \quad \epsilon, 1^{+}=1+\epsilon, \epsilon$ is an infinitesimal number. To apply neutrosophic set in real-life problems more conveniently, Smarandache [15] and Wang et al. [16] defined single-valued neutrosophic sets which takes the value from the subset of $[0,1]$. Thus, a singlevalued neutrosophic set is an instance of neutrosophic set, and can be used expediently to deal with realworld problems, especially in decision support. Algebraic structures have a vital place with vast applications in various disciplines. Neutrosophic set theory has been applied to algebraic structures [1, 8,13]. In this research article, we introducethe notion of neutrosophic pythogorean K-subalgebra and investigate some of their properties. We discuss K-sub algebra in terms of level sets using neutrosophic pythogorean environment. We study the homomorphisms between the neutrosophic pythogorean K sub algebras. We discuss characteristic K-sub algebras and fully invariant -sub algebras.

Neutrosophic pythogorean K-algebras

The concept of K-algebra was developed by Dar and Akram in [14].
Definition 2.1. Let (G, \cdot, e) be a group in which each non-identity element is not of order 2 . Then a K-algebra is a structure $\mathrm{K}=(G,, \odot, e)$ on a group G in which induced binary operation \odot $: G \times G \rightarrow G$ is defined by $\odot(x, y)=x \odot y=x . y^{-1}$ and satisfies the following axioms:
(i) $(x \odot y) \odot(x \odot z)=(x \odot((e \odot z) \odot(e \odot y))) \odot x$,
(ii) $x \odot(x \odot y)=(x \odot(e \odot y)) \odot x$,
(iii) $(x \odot x)=e$,
(iv) $(x \odot e)=x$,
(v) $(e \odot x)=x^{-1}$, for all $x, y, z \in G$.

Definition 2.2. [16] Let Z be a space of objects with a general element $z \in Z$. A neutrosophic pythogorean set A in Z is characterized by three membership functions, T_{A}-truth membership function, I_{A}-indeterminacy membership function and F_{A}-falsity membership function, where $\mathrm{T}_{\mathrm{A}}(z), \mathrm{I}_{\mathrm{A}}(z), \mathrm{F}_{\mathrm{A}}(z) \in[0,1]$, for all $z \in Z$.

That is $\mathrm{T}_{\mathrm{A}}: Z \rightarrow[0,1], \mathrm{I}_{\mathrm{A}}: Z \rightarrow[0,1], \mathrm{F}_{\mathrm{A}}: Z \rightarrow[0,1]$ with no restriction on the sum of these three components.
A can also be written as $\mathrm{A}=\left\{\left\langle z, \mathrm{~T}_{\mathrm{A}}(z), \mathrm{I}_{\mathrm{A}}(z), \mathrm{F}_{\mathrm{A}}(z)\right\rangle \mid z \in Z\right\}$.
Definition 2.3. A neutrosophic pythogorean set $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ in a K-algebra K is called a neutrosophic pythogorean K-sub algebra of K if it satisfy the following conditions:
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$, for all $s, t \in G$.
Note that $\mathrm{T}_{\mathrm{A}}(e) \geq \mathrm{T}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(e) \geq \mathrm{I}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(e) \leq \mathrm{F}_{\mathrm{A}}(s)$, for all $s \in G$.
Example 2.1. Consider $\mathrm{K}=(G$, , $\odot, e)$ be a K-algebra, where $G=\left\{e, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}\right.$, $\left.x^{8}\right\}$ is the cyclic group of order 9 and Caley's table for \odot is given as:

\odot	e	x	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}	x^{7}	x^{8}
e	e	x^{8}	x^{7}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x
x	x	e	x^{6}	x^{7}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}
x^{2}	x^{2}	x^{2}	e	x^{8}	x^{7}	x^{6}	x^{5}	x^{4}	x^{3}
x^{3}	x^{3}	x^{3}	x	e	x^{8}	x^{7}	x^{6}	x^{5}	x^{4}
x^{4}	x^{4}	x^{4}	x^{2}	x	e	x^{8}	x^{7}	x^{6}	x^{5}
x^{5}	x^{5}	x^{5}	x^{3}	x^{2}	x	e	x^{8}	x^{7}	x^{6}
x^{6}	x^{6}	x^{6}	x^{4}	x^{3}	x^{2}	x	e	x^{8}	x^{7}
x^{7}	x^{7}	x^{7}	x^{5}	x^{4}	x^{3}	x^{2}	x	e	x^{8}
x^{8}	x^{8}	x^{2}	x^{6}	x^{5}	x^{4}	x^{3}	x^{2}	x	e

We define a neutrosophic pythogorean set $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ in K-algebra as follows:
$\mathrm{T}_{\mathrm{A}}(e)=0.7, \mathrm{I}_{\mathrm{A}}(e)=0.6, \mathrm{~F}_{\mathrm{A}}(e)=0.3$,
$\mathrm{T}_{\mathrm{A}}(s)=0.1, \mathrm{I}_{\mathrm{A}}(s)=0.2, \mathrm{~F}_{\mathrm{A}}(s)=0.5$, for all $s \neq e \in G$.
Clearly, $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K .

Example 2.2. Consider $\mathrm{K}=(G, \cdot \odot, e)$ be a K-algebra on dihedral group $D 4$ given as $G=\{e, a$, $b, c, x, y, u, v\}$, where $c=a b, x=a^{2}, y=a^{3}, u=a^{2} b, v=a^{3} b$ and Caley's table for \odot is given as:

\odot	e	a	b	c	x	y	u	v
e	e	y	b	c	x	a	u	v
a	a	e	c	u	y	x	v	b
b	b	c	e	y	u	v	x	a
c	c	u	a	e	v	b	y	x
x	x	a	u	v	e	y	b	c
y	y	x	v	b	a	e	c	u
u	u	v	x	a	b	c	e	y
v	v	b	y	x	c	u	a	e

We define a neutrosophic pythogorean set $A=\left(T_{A}, I_{A}, F_{A}\right)$ in K-algebra as follows:
$\mathrm{T}_{\mathrm{A}}(\mathrm{e})=0.8, \mathrm{~T}_{\mathrm{A}}(\mathrm{e})=0.2, \mathrm{~F}_{\mathrm{A}}(\mathrm{e})=0.2$,
$\mathrm{T}_{\mathrm{A}}(\mathrm{s})=0.5, \mathrm{I}_{\mathrm{A}}(\mathrm{s})=0.1, \mathrm{~F}_{\mathrm{A}}(\mathrm{s})=0.3$, for all $s \neq e \in \mathrm{G}$.
By routine calculations, it can be verified that A is a neutrosophic pythogorean K -sub algebra ok K .
Proposition 2.1. If $A=\left(T_{A}, I_{A}, F_{A}\right)$ is a neutrosophic pythogorean K-sub algebra of K, then

1. $(\forall s, t \in G),\left(\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{A}}(t) \Rightarrow \mathrm{T}_{\mathrm{A}}(s)=\mathrm{T}_{\mathrm{A}}(e)\right) .(\forall s, t \in G)\left(\mathrm{T}_{\mathrm{A}}(s)=\mathrm{T}_{\mathrm{A}}(e)\right.$

$$
\left.\Rightarrow \mathrm{T}_{\mathrm{A}}(s \odot t) \geq \mathrm{T}_{\mathrm{A}}(t)\right)
$$

2. $(\forall s, t \in G),\left(\mathbf{I}_{\mathrm{A}}(s \odot t)=\mathbf{I}_{\mathrm{A}}(t) \Rightarrow \mathbf{I}_{\mathrm{A}}(s)=\mathbf{I}_{\mathrm{A}}(e)\right) .(\forall s, t \in G)\left(\mathbf{I}_{\mathrm{A}}(s)=\mathbf{I}_{\mathrm{A}}(e)\right.$

$$
\left.\Rightarrow \mathbf{I}_{\mathrm{A}}(s \odot t) \geq \mathbf{I}_{\mathrm{A}}(t)\right)
$$

3. $(\forall s, t \in G),\left(\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{A}}(t) \Rightarrow \mathrm{F}_{\mathrm{A}}(s)=\mathrm{F}_{\mathrm{A}}(e)\right) .(\forall s, t \in G)\left(\mathrm{F}_{\mathrm{A}}(s)=\mathrm{F}_{\mathrm{A}}(e)\right.$

$$
\left.\Rightarrow \mathbf{F}_{\mathbf{A}}(s \odot t) \leq \mathbf{F}_{\mathbf{A}}(t)\right) .
$$

Proof. 1. Assume that $\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{A}}(t)$, for all $s, t \in G$. Taking $t=e$ and using (iii) of Definition 2.1, wehave $\mathrm{T}_{\mathrm{A}}(s)=\mathrm{T}_{\mathrm{A}}(s \odot e)=\mathrm{T}_{\mathrm{A}}(e)$. Let for $s, t \in G$ be such that $\mathrm{T}_{\mathrm{A}}(s)=\mathrm{T}_{\mathrm{A}}(e)$.

Then $\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}=\min \left\{\mathrm{T}_{\mathrm{A}}(e), \mathrm{T}_{\mathrm{A}}(t)\right\}=\mathrm{T}_{\mathrm{A}}(t)$.
Again assume that $\mathrm{I}_{\mathrm{A}}(s \odot t)=\mathrm{I}_{\mathrm{A}}(t)$, for all $s, t \in G$. Taking $t=e$ and by (iii) of Definition 2.1, we have $\mathrm{I}_{\mathrm{A}}(s)=\mathrm{I}_{\mathrm{A}}(s \odot e)=\mathrm{I}_{\mathrm{A}}(e)$. Also let $s, t \in G$ be such that $\mathrm{I}_{\mathrm{A}}(s)=\mathrm{I}_{\mathrm{A}}(e)$. Then $\mathrm{I}_{\mathrm{A}}(s$ $\odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), I_{(t)}\right\}=\min \left\{\mathrm{I}_{\mathrm{A}}(e), \mathrm{I}_{\mathrm{A}}(t)\right\}=\mathrm{I}_{\mathrm{A}}(t)$.
Consider that $\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{A}}(t)$, for all $s, t \in G$. Taking $t=e$ and again by (iii) of Definition 2.1, we have $\mathrm{F}_{\mathrm{A}}(s)=\mathrm{F}_{\mathrm{A}}(s \odot e)=\mathrm{F}_{\mathrm{A}}(e)$. Let $s, t \in G$ be such that $\mathrm{F}_{\mathrm{A}}(s)=F_{(}(e)$.

Then $\mathrm{A}_{\mathrm{A}}(\mathrm{t} \quad \mathrm{F} \quad$ max $\mathrm{A}(\mathrm{F}), \quad \mathrm{A}(t)\} \max \left\{\mathrm{F} \quad \mathrm{F}_{\mathrm{A}}(e)\right\} \quad \mathrm{A}(t)=\mathrm{A}^{2}(t)$.
This completes the proof.
Definition 2.4. Let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a neutrosophic pythogorean set in a K-algebra K and let $(\alpha, \beta, \gamma) \in[0,1] \times[0,1] \times[0,1]$ with $\alpha+\beta+\gamma \leq 3$. Then level subsets of A are defined as:
$\mathrm{A}_{(\alpha, \beta, \gamma)}=\left\{s \in G \mid \mathrm{T}_{\mathrm{A}}(s) \geq \alpha, \mathrm{I}_{\mathrm{A}}(s) \geq \beta, \mathrm{F}_{\mathrm{A}}(s) \leq \gamma\right\}$
$\mathrm{A}_{(\alpha, \beta, \gamma)}=\left\{s \in G \mid \mathrm{T}_{\mathrm{A}}(s) \geq \alpha\right\} \cap\left\{s \in G \mid \mathrm{I}_{\mathrm{A}}(s) \geq \beta\right\} \cap\left\{s \in G \mid \mathrm{F}_{\mathrm{A}}(s) \leq \gamma\right\}$
$\mathrm{A}_{(\alpha, \beta, \gamma)}=\mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha\right) \cap \cup\left(\mathrm{I}_{\mathrm{A}}, \beta\right) \cap L^{\prime}\left(\mathrm{F}_{\mathrm{A}}, \gamma\right)$. are called (α, β, γ)-level subsets of neutrosophic pythogorean set A.

The set of all $(\alpha, \beta, \gamma) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right)$ is known as image of $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$.
The set $\mathrm{A}_{(\alpha, \beta, \gamma)}=\left\{s \in G \mid \mathrm{T}_{\mathrm{A}}(s)>\alpha, \mathrm{I}_{\mathrm{A}}(s)>\beta, \mathrm{F}_{\mathrm{A}}(s)<\gamma\right\}$ is known as strong (α, β, γ) - level subset of A.

Proposition 2.2. If $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K , then the level subsets $\cup\left(\mathrm{T}_{\mathrm{A}}, \alpha\right)=\left\{s \in G \mid \mathrm{T}_{\mathrm{A}}(s) \geq \alpha\right\}, \cup\left(\mathbf{I}_{\mathrm{A}}, \beta\right)=\left\{s \in G \mid \mathbf{I}_{\mathrm{A}}(s) \geq \beta\right\}$ and $\boldsymbol{L}\left(\mathrm{F}_{\mathrm{A}}\right.$, $\gamma)=\left\{s \in G \mid \mathrm{F}_{\mathrm{A}}(s) \leq \gamma\right\}$ are k-sub algebras of K , for every $(\alpha, \beta, \gamma) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ $\subseteq[0,1]$, where $\operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right), \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right)$ and $\operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ are sets of values of $\left.\left.T_{(} \mathrm{A}\right), \mathrm{I}_{(} \mathrm{A}\right)$ and $\left.F_{(} \mathrm{A}\right)$, respectively.
Proof. Assume that $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K and let $(\alpha, \beta, \gamma) \in$
$\operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathbf{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ be such that $U\left(\mathrm{~T}_{\mathrm{A}}, \alpha\right) \ell \emptyset, \mathrm{U}^{\prime}\left(\mathbf{I}_{\mathrm{A}}, \beta\right) \neq \emptyset$ and $L\left(\mathrm{~F}_{\mathrm{A}}, \gamma\right) \neq \emptyset$. Now to prove that U, U^{\prime} and \boldsymbol{L} are level \boldsymbol{K}-sub algebras. Let for $s, t \in \cup\left(\mathrm{~T}_{\mathrm{A}}, \alpha\right), \mathrm{T}_{\mathrm{A}}(s) \geq \alpha$ and $\mathrm{T}_{\mathrm{A}}(t) \geq \alpha$. It follows from Definition 3.1 that $\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\} \geq \alpha$. It implies that s $\odot t \in \mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha\right)$. Hence $\mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha\right)$ is a level \boldsymbol{K}-sub algebra of K . Similar result can be proved for U $\left(\mathbf{I}_{\mathrm{A}}, \beta\right)$ and $\boldsymbol{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma\right)$.

Theorem 2.1. Let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a neutrosophic pythogorean set in K-algebra K . Then $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K_{-}sub algebra of K if and only if $\mathrm{A}_{(\alpha, \beta, \gamma)}$ is a $K-$ sub algebraof K , for every $(\alpha, \beta, \gamma) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ with $\alpha+\beta+\gamma \leq 3$.

Proof. Let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a pythogorean set in a K-algebra K. Assume that $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}\right.$, $\mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}$) be a neutrosophic pythogorean K-sub algebra of K . i.e., the following three conditions of Definition 3.1 hold.
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$, for all $s, t \in G$.
$\mathrm{T}_{\mathrm{A}}(e) \geq \mathrm{T}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(e) \geq \mathrm{I}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(e) \leq \mathrm{F}_{\mathrm{A}}(s)$, for all $s \in G$.
Let for $(\alpha, \beta, \gamma) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathbf{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ with $\alpha+\beta+\gamma \leq 3$ be such that $\mathrm{A}_{(\alpha, \beta, \gamma)} \neq 0$. Let s, t $\in \mathrm{A}_{(\alpha, \beta, \gamma)}$
be such that
$\mathrm{T}_{\mathrm{A}}(s) \geq \alpha, \mathrm{T}_{\mathrm{A}}(t) \geq \alpha$,
$\mathrm{I}_{\mathrm{A}}(s) \geq \beta, \mathrm{I}_{\mathrm{A}}(t) \geq \beta$,
$\mathrm{F}_{\mathrm{A}}(s) \leq \gamma, \mathrm{F}_{\mathrm{A}}(t) \leq \gamma$.
Without loss of generality we can assume that $\alpha \leq \alpha^{\prime}, \beta \leq \beta^{\prime}$ and $\gamma \geq \gamma^{\prime}$. It follows from Definition 3.1 that
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \alpha=\min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \beta=\min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \gamma=\max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$.
It implies that $s \odot t \in \mathrm{~A}_{(\alpha, \beta, \gamma)}$. So, $\mathrm{A}_{(\alpha, \beta, \gamma)}$ is a K-sub algebra of K .
Conversely, we suppose that $\mathrm{A}_{(\alpha, \beta, \gamma)}$ is a K-sub algebra of K . If the condition of the Definition 3.1 is not true, then there exist $u, v \in G$ such that
$\mathrm{T}_{\mathrm{A}}(u \odot v)<\min \left\{\mathrm{T}_{\mathrm{A}}(u), \mathrm{T}_{\mathrm{A}}(v)\right\}$,
$\mathrm{I}_{\mathrm{A}}(u \odot v)<\min \left\{\mathrm{I}_{\mathrm{A}}(u), \mathrm{I}_{\mathrm{A}}(v)\right\}$,
$\mathrm{F}_{\mathrm{A}}(u \odot v)>\max \left\{\mathrm{F}_{\mathrm{A}}(u), \mathrm{F}_{\mathrm{A}}(v)\right\}$.

Taking
$\alpha_{1}={ }^{1}\left(\mathrm{~T}_{\text {方 }}(u \odot v)+\min \left\{\mathrm{T}_{\mathrm{A}}(u), \mathrm{T}_{\mathrm{A}}(v)\right\}\right)$,
$\beta_{1}={ }^{1}\left(\mathrm{I}_{\mathbf{2}}(u \odot v)+\min \left\{\mathrm{I}_{\mathrm{A}}(u), \mathrm{I}_{\mathrm{A}}(v)\right\}\right)$,
$\gamma_{1}={ }^{1}\left(\mathrm{~F}_{\text {仡 }}(u \odot v)+\min \left\{\mathrm{F}_{\mathrm{A}}(u), \mathrm{F}_{\mathrm{A}}(v)\right\}\right)$.
We have $\mathrm{T}_{\mathrm{A}}(u \odot v)<\alpha_{1}<\min \left\{\mathrm{T}_{\mathrm{A}}(u), \mathrm{T}_{\mathrm{A}}(v)\right\}, \mathrm{I}_{\mathrm{A}}(u \odot v)<\beta_{1}<\min \left\{\mathrm{I}_{\mathrm{A}}(u), \mathrm{I}_{\mathrm{A}}(v)\right\}$ and $\mathrm{F}_{\mathrm{A}}(u \odot v)>\gamma_{1}>\max \left\{\mathrm{F}_{\mathrm{A}}(u), \mathrm{F}_{\mathrm{A}}(v)\right\}$. It implies that $u, v \in \mathrm{~A}_{(\alpha, \beta, \gamma)}$ and $u \odot v \notin \mathrm{~A}_{(\alpha, \beta, \gamma)}$, a contradiction. Therefore, the condition of Definition 3.1 is true. Hence $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean k -sub algebra of K .
Theorem 2.2. Let $A=\left(T_{A}, I_{A}, F_{A}\right)$ be a neutrosophic pythogorean k-sub algebra and ($\alpha_{1}, \beta_{1}, \gamma_{1}$), $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$ with $\alpha_{j}+\beta_{j}+\gamma_{j} \leq 3$ for $j=1$, 2 . Then $\mathrm{A}_{(\alpha 1, \beta 1, \gamma 1)}$ $=\mathrm{A}_{(\alpha 2, \beta 2, \gamma 2)}$ if $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$.
Proof. If $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$, then clearly $\mathrm{A}_{(\alpha 1, \beta 1, \gamma 1)}=\mathrm{A}_{(\alpha 2, \beta 2, \gamma 2)}$.
Assume that $\mathrm{A}_{(\alpha 1, \beta 1, \gamma 1)}=\mathrm{A}_{(\alpha 2, \beta 2, \gamma 2)}$. Since $\left(\alpha_{1}, \beta_{\left.1, \gamma_{1}\right)} \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)\right.$, there exist $s \in G$ such that $\mathrm{T}_{\mathrm{A}}(s)=\alpha_{1}, \mathrm{I}_{\mathrm{A}}(s)=\beta_{1}$ and $\mathrm{F}_{\mathrm{A}}(s)=\gamma_{1}$. It follows that $s \in \mathrm{~A}_{(\alpha 1, \beta 1, \gamma 1)}=$ $\mathrm{A}_{(\alpha 2, \beta 2, \gamma 2)}$. So that $\alpha_{1}=\mathrm{T}_{\mathrm{A}}(s) \geq \alpha_{2}, \beta_{1}=\mathrm{I}_{\mathrm{A}}(s) \geq \beta_{2}$ and $\gamma_{1}=\mathrm{F}_{\mathrm{A}}(s) \leq \gamma_{2}$.
Also $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right) \in \operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right) \times \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)$, there exist $t \in G$ such that $\mathrm{T}_{\mathrm{A}}(t)=\alpha_{2}, \mathrm{I}_{\mathrm{A}}(t)=\beta_{2}$ and $\mathrm{F}_{\mathrm{A}}(t)=\gamma_{2}$. It follows that $t \in \mathrm{~A}_{(\alpha 2, \beta 2, \gamma 2)}=\mathrm{A}_{(\alpha 1, \beta 1, \gamma 1)}$.
So that $\alpha_{2}=\mathrm{T}_{\mathrm{A}}(t) \geq \alpha_{1}, \beta_{2}=\mathrm{I}_{\mathrm{A}}(t) \geq \beta_{1}$ and $\gamma_{2}=\mathrm{F}_{\mathrm{A}}(t) \leq \gamma_{1}$. Hence $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)=\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$.
Theorem 2.3. Let H be a K-sub algebra of K-algebra K. Then there exist neutrosophic pythogorean K - sub algebra $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ of K-algebra K such that $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)=H$, for some $\alpha, \beta \in(0,1], \gamma \in[0,1)$.
Proof. Let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a neutrosophic pythogorean set in K-alge $\overline{\mathrm{r}} \mathrm{ra} \mathrm{K}$ given by

$$
\begin{aligned}
& T_{A}(s)=\left\{\begin{array}{c}
\alpha \in(0,1] \text { if } s \in H . \\
0 \text { otherwise }
\end{array}\right. \\
& I_{A}(s)=\left\{\begin{array}{c}
\beta \in(0,1] \text { if } s \in H . \\
0 \text { otherwise }
\end{array}\right. \\
& F_{A}(s)=\left\{\begin{array}{cc}
\gamma \in(0,1] \text { if } s \in H . \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Let $s, t \in G$. If $s, t \in H$, then $s \odot t \in H$ and so
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$.
But if $s \notin H$ or $t \notin H$, then $\mathrm{T}_{\mathrm{A}}(s)=0$ or $\mathrm{T}_{\mathrm{A}}(t), \mathbf{I}_{\mathrm{A}}(s)=0$ or $\mathbf{I}_{\mathrm{A}}(t)$ and $\mathrm{F}_{\mathrm{A}}(s)=0$ or $\mathrm{F}_{\mathrm{A}}(t)$. It follows that
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}, \mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}, \mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$. Hence $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a SVN K-sub algebra of K . Consequently $\mathrm{A}_{(\alpha, \beta, \gamma)}=H$.
The above Theorem shows that any K-sub algebra of K can be perceived as a level K-sub algebra of someneutrosophic pythogorean K-sub algebras of K.

Theorem 2.4.

Let K be a K-algebra. Given a chain of K-sub algebras: $\mathrm{A}_{0} \subset \mathrm{~A}_{1} \subset \mathrm{~A}_{2} \subset \quad \ldots \quad \subset A_{n}=G$. Then there exist a neutrosophic pythogorean K-sub algebra whose level K-sub algebras are exactly the K sub algebras in this chain.
Proof. Let $\left\{\alpha_{k} \mid k=0,1, \ldots, n\right\},\left\{\beta_{k} \mid k=0,1, \ldots, n\right\}$ be finite decreasing sequences and $\left\{\gamma_{k} \mid k=\right.$ $0,1, \ldots, n\}$ be finite increasing sequence in $[0,1]$ such that $\alpha_{i}+\beta_{i}+\gamma_{i} \leq 3$, for $i=0,1,2, \ldots, n$. Let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a neutrosophic pythogorean set in K defined by $\mathrm{T}_{\mathrm{A}}\left(\mathrm{A}_{0}\right)=\alpha_{0}, \mathrm{I}_{\mathrm{A}}\left(\mathrm{A}_{0}\right)=$ $\beta_{0}, \mathrm{~F}_{\mathrm{A}}\left(\mathrm{A}_{0}\right)=\gamma_{0}, \mathrm{~T}_{\mathrm{A}}\left(\mathrm{A}_{k} \backslash \mathrm{~A}_{k-1}\right)=\alpha_{k}, \mathrm{I}_{\mathrm{A}}\left(\mathrm{A}_{k} \backslash \mathrm{~A}_{k-1}\right)=\beta_{k}$ and $\mathrm{F}_{\mathrm{A}}\left(\mathrm{A}_{k} \backslash \mathrm{~A}_{k-1}\right)=\gamma_{k}$, for $0<$ $k \leq n$. We claim that $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K . Let $s, t \in G$. If $s, t \in \mathrm{~A}_{k} \backslash \mathrm{~A}_{k-1}$, then it implies that $\mathrm{T}_{\mathrm{A}}(s)=\alpha_{k}=\mathrm{T}_{\mathrm{A}}(t), \mathrm{I}_{\mathrm{A}}(s)=\beta_{k}=\mathrm{I}_{\mathrm{A}}(t)$ and $\mathrm{F}_{\mathrm{A}}(s)$ $=\gamma_{k}=\mathrm{F}_{\mathrm{A}}(t)$. Since each A_{k} is a K-sub algebra, it follows that $s \odot t \in \mathrm{~A}_{k}$. So that either $s \odot t \in$ $\mathrm{A}_{k} \backslash \mathrm{~A}_{k-1}$ or $s \odot t \in \mathrm{~A}_{k-1}$. In any case, we conclude that
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \alpha_{k}=\min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \beta_{k}=\min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \gamma_{k}=\max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$.
For $i>j$, if $s \in \mathrm{~A}_{i} \backslash \mathrm{~A}_{i-1}$ and $t \in \mathrm{~A}_{j} \backslash \mathrm{~A}_{j-1}$, then $\mathrm{T}_{\mathrm{A}}(s)=\alpha_{i}, \mathrm{~T}_{\mathrm{A}}(t)=\alpha_{j}, \mathrm{I}_{\mathrm{A}}(s)=\beta_{i}, \mathrm{I}_{\mathrm{A}}(t)=\beta_{j}$ and $\mathrm{F}_{\mathrm{A}}(s)=$
$\gamma_{i}, \mathrm{~F}_{\mathrm{A}}(t)=\gamma_{j}$ and $s \odot t \in \mathrm{~A}_{i}$ because A_{i} is a K-sub algebra and $\mathrm{A}_{j} \subset \mathrm{~A}_{i}$. It follows that
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \alpha_{i}=\min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \beta_{i}=\min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \gamma_{i}=\max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$ 。
Thus, $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K and all its non empty level subsetsare level K-sub algebras of K.
Since $\operatorname{Im}\left(\mathrm{T}_{\mathrm{A}}\right)=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right\}, \operatorname{Im}\left(\mathrm{I}_{\mathrm{A}}\right)=\left\{\beta_{0}, \beta_{1}, \ldots, \beta_{\mathrm{n}}\right\}, \operatorname{Im}\left(\mathrm{F}_{\mathrm{A}}\right)=\left\{\gamma_{0}, \gamma_{1}, \ldots, \gamma_{\mathrm{n}}\right\}$. Therefore, the level K-sub algebras of $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ are given by the chain of K-sub algebras:
$\mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha_{0}\right) \subset \mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha_{1}\right) \subset \ldots \subset \mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha_{n}\right)=G$,
$U^{\prime}\left(\mathrm{I}_{\mathrm{A}}, \beta_{0}\right) \subset \mathrm{U}^{\prime}\left(\mathrm{I}_{\mathrm{A}}, \beta_{\mathrm{I}}\right) \subset \ldots \subset \mathrm{U}^{\prime}\left(\mathrm{I}_{\mathrm{A}}, \beta_{n}\right)=G$,
$\mathrm{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma_{0}\right) \subset \mathrm{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma_{1}\right) \subset \ldots \subset \mathrm{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma_{n}\right)=G$,
respectively. Indeed,
$\mathrm{U}\left(\mathrm{T}_{\mathrm{A}}, \alpha_{0}\right)=\left\{s \in G \mid \mathrm{T}_{\mathrm{A}}(s) \geq \alpha_{0}\right\}=\mathrm{A}_{0}$,
$\cup\left(\mathrm{I}_{\mathrm{A}}, \beta_{0}\right)=\left\{s \in G \mid \mathrm{I}_{\mathrm{A}}(s) \geq \beta_{0}\right\}=\mathrm{A}_{0}$,
$\mathrm{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma_{0}\right)=\left\{s \in G \mid \mathrm{F}_{\mathrm{A}}(s) \leq \gamma_{0}\right\}=\mathrm{A}_{0}$.
Now we prove that $U\left(\mathrm{~T}_{\mathrm{A}}, \alpha_{k}\right)=\mathrm{A}_{k}, \cup^{\prime}\left(\mathbf{I}_{\mathrm{A}}, \beta_{k}\right)=\mathrm{A}_{k}$ and $\boldsymbol{L}\left(\mathrm{F}_{\mathrm{A}}, \gamma_{k}\right)=\mathrm{A}_{k}$, for $0<k \leq n$. Clearly, $\mathrm{A}_{k} \subseteq U\left(\mathrm{~T}_{\mathrm{A}}, \alpha_{k}\right), \mathrm{A}_{k} \subseteq U^{\prime}\left(\mathbf{I}_{\mathrm{A}}, \beta_{k}\right)$ and $\mathrm{A}_{k} \subseteq \boldsymbol{L}\left(\mathrm{~F}_{\mathrm{A}}, \gamma_{k}\right)$. If $s \in \cup\left(\mathrm{~T}_{\mathrm{A}}, \alpha_{k}\right)$, then $\mathrm{T}_{\mathrm{A}}(s) \geq \alpha_{k}$ and so $s \notin \mathrm{~A}_{i}$, for
$i>k$.
Hence $\mathrm{T}_{\mathrm{A}}(s) \in\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right\}$ which implies that $s \in \mathrm{~A}_{i}$, for some $i \leq k$ since $\mathrm{A}_{i} \subseteq \mathrm{~A}_{k}$. It follows that s $\in \mathrm{A}_{k}$. Consequently, $\cup\left(\mathrm{T}_{\mathrm{A}}, \alpha_{k}\right)=\mathrm{A}_{k}$ for some $0<k \leq n$. Similar case can be proved for $\cup^{\prime}\left(\mathbf{I}_{\mathrm{A}}\right.$, $\left.\beta_{k}\right)=\mathrm{A}_{k}$. Now if $t \in L\left(\mathbf{F}_{\mathrm{A}}, \gamma_{k}\right)$, then $\mathrm{F}_{\mathrm{A}}(s) \leq \gamma_{k}$ and so $t \notin \mathrm{~A}_{i}$, for some $\boldsymbol{j} \leq k$. Thus, $\mathrm{F}_{\mathrm{A}}(s) \in\left\{\gamma_{0}\right.$, $\left.\gamma_{1}, \ldots, \gamma_{k}\right\}$ which implies that $s \in \mathrm{~A}_{j}$, for some $j \leq k$. Since $\mathrm{A}_{j} \subseteq \mathrm{~A}_{k}$. It follows that $t \in \mathrm{~A}_{k}$.

2.1 Homomorphism of neutrosophic pythogorean K-algebras

Definition 2.5. Let $K_{1}=\left(G_{1},, \odot, e_{1}\right)$ and $K_{2}=\left(G_{2},, \odot, e_{2}\right)$ be two K-algebras and let ϕ be a function from K_{1} into K_{2}. If $\mathrm{B}=\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{F}_{\mathrm{B}}\right)$ is a neutrosophic pythogorean K-sub algebra of K_{2}, then the preimage of $\mathrm{B}=\left(\mathrm{T}_{\mathrm{B}}, \mathbf{I}_{\mathrm{B}}, \mathrm{F}_{\mathrm{B}}\right)$ under ϕ is a neutrosophic pythogorean \boldsymbol{K}-sub algebra of K_{1} defined by $\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s)=\mathrm{T}_{\mathrm{B}}(\phi(s)), \phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s)=\mathbf{I}_{\mathrm{B}}(\phi(s))$ and $\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s)=\mathrm{F}_{\mathrm{B}}(\phi(s))$, for all $s \in G_{1}$.
Theorem 2.5. Let $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ be an epimorphism of K-algebras. If $\mathrm{B}=\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{F}_{\mathrm{B}}\right)$ be a neutrosophic pythogorean K-sub algebra of K_{2}, then $\phi^{-1}(\mathrm{~B})$ be a neutrosophic pythogorean K-sub algebra of K_{1}.

Proof. It is easy to see that $\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(e) \geq \phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s), \phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(e) \geq \phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s)$ and $\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(e) \leq$ $\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s)$ for all $s \in G_{1}$. Let $s, t \in G_{1}$, then
$\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s \odot t)=\mathrm{T}_{\mathrm{B}}(\phi(s \odot t))$
$\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s \odot t)=\mathrm{T}_{\mathrm{B}}(\phi(s) \bigodot \phi(t))$
$\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{B}}(\phi(s)), \mathrm{T}_{\mathrm{B}}(\phi(t))\right\}$
$\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s \odot t) \geq \min \left\{\phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(s), \phi^{-1}\left(\mathrm{~T}_{\mathrm{B}}\right)(t)\right\}$,
$\phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s \odot t)=\mathbf{I}_{\mathrm{B}}(\phi(s \odot t))$
$\phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s \odot t)=\mathbf{I}_{\mathrm{B}}(\phi(s) \odot \phi(t))$
$\phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s \odot t) \geq \min \left\{\mathbf{I}_{\mathrm{B}}(\phi(s)), \mathbf{I}_{\mathrm{B}}(\phi(t))\right\}$
$\phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s \odot t) \geq \min \left\{\phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(s), \phi^{-1}\left(\mathbf{I}_{\mathrm{B}}\right)(t)\right\}$,
$\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s \odot t)=\mathrm{F}_{\mathrm{B}}(\phi(s \odot t))$
$\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s \odot t)=\mathrm{F}_{\mathrm{B}}(\phi(s) \odot \phi(t))$
$\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{B}}(\phi(s)), \mathrm{F}_{\mathrm{B}}(\phi(t))\right\}$
$\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s \odot t) \leq \max \left\{\phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(s), \phi^{-1}\left(\mathrm{~F}_{\mathrm{B}}\right)(t)\right\}$.
Hence $\phi^{-1}(\mathrm{~B})$ is a neutrosophic pythogorean K-sub algebra of K_{1}.
Theorem 2.6. $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ be an epimorphism of K-algebras. If $\mathrm{B}=\left(\mathrm{T}_{\mathrm{B}}, \mathrm{I}_{\mathrm{B}}, \mathrm{F}_{\mathrm{B}}\right)$ is a neutrosophic pythogorean K-sub algebra of K_{2} and $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is the preimage of B under ϕ. Then A is a neutrosophic pythogorean K-sub algebra of K_{1}.
Proof. It is easy to see that $\mathrm{T}_{\mathrm{A}}(e) \geq \mathrm{T}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(e) \geq \mathrm{I}_{\mathrm{A}}(s)$ and $\mathrm{F}_{\mathrm{A}}(e) \leq \mathrm{F}_{\mathrm{A}}(s)$, for all $s \in G_{1}$. Now for any $s, t \in G_{1}$,
$\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{B}}(\phi(s \odot t))$
$\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{B}}(\phi(s) \odot \phi(t))$
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{B}}(\phi(s)), \mathrm{T}_{\mathrm{B}}(\phi(t))\right\}$
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathbf{I}_{\mathrm{A}}(s \odot t)=\mathbf{I}_{\mathrm{B}}(\phi(s \odot t))$
$\mathbf{I}_{\mathrm{A}}(s \odot t)=\mathbf{I}_{\mathbf{B}}(\phi(s) \odot \phi(t))$
$\mathbf{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathbf{I}_{\mathrm{B}}(\phi(s)), \mathbf{I}_{\mathrm{B}}(\phi(t))\right\}$
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{B}}(\phi(s \odot t))$
$\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{B}}(\phi(s) \odot \phi(t))$
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{B}}(\phi(s)), \mathrm{F}_{\mathrm{B}}(\phi(t))\right\}$
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$.
Hence A is a neutrosophic pythogorean K-sub algebra of $\mathrm{K}_{1 . \square}$

Definition 2.6. Let a mapping $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ from K_{1} into K_{2} of K-algebras and let $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}\right.$, $\left.\mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ bea neutrosophic pythogorean set of K_{2}. The map $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is called the preimage of A under ϕ, if $\mathrm{T}_{\mathrm{A}}{ }^{\phi}(s)=\mathrm{T}_{\mathrm{A}}(\phi(s)), \mathrm{I}_{\mathrm{A}}{ }^{\phi}(s)=\mathbf{I}_{\mathrm{A}}(\phi(s))$ and $\mathrm{F}_{\mathrm{A}}{ }^{\phi}=\mathrm{F}_{\mathrm{A}}(\phi(s))$ for all $s \in G_{1}$.

Proposition 2.3. Let $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ be an epimorphism of K-algebras. If $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ be a neutrosophic pythogorean K-sub algebra of K_{2}, then $\mathrm{A}^{\phi}=\left(\mathrm{T}_{\mathrm{A}}{ }^{\phi}, \mathrm{I}_{\mathrm{A}}{ }^{\phi}, \mathrm{F}_{\mathrm{A}}{ }^{\phi}\right)$ be a neutrosophic pythogorean K-sub algebra of K_{1}.
Proof. For any $s \in G_{1}$, we have
$\mathrm{T}_{\mathrm{A}} \phi_{\left(e_{1}\right)}=\mathrm{T}_{\mathrm{A}} \phi_{\left(\phi\left(e_{1}\right)\right)}=\mathrm{T}_{\mathrm{A}}\left(e_{2}\right) \geq \mathrm{T}_{\mathrm{A}}(\phi(s))=\mathrm{T}_{\mathrm{A}}(s)$,
$\mathrm{I}_{\mathrm{A}}{ }^{\phi}\left(e_{1}\right)=\mathrm{I}_{\mathrm{A}}{ }^{\phi}\left(\phi\left(e_{1}\right)\right)=\mathbf{I}_{\mathrm{A}}\left(e_{2}\right) \geq \mathbf{I}_{\mathrm{A}}(\phi(s))=\mathbf{I}_{\mathrm{A}}(s)$,
$\mathrm{F}_{\mathrm{A}}{ }^{\phi}\left(e_{1}\right)=\mathrm{F}_{\mathrm{A}}{ }^{\phi}\left(\phi\left(e_{1}\right)\right)=\mathrm{F}_{\mathrm{A}}\left(e_{2}\right) \leq \mathrm{F}_{\mathrm{A}}(\phi(s))=\mathrm{F}_{\mathrm{A}}(s)$.
For any $s, t \in G_{1}$, since A is a neutrosophic pythogorean K-sub algebra of K_{2}

$$
\mathrm{I}_{\mathrm{A}} \phi(s \odot t)=\mathbf{I}_{\mathrm{A}}(\phi(s \odot t))
$$

$$
\left.\mathrm{I}_{\mathrm{A}} \phi^{(s} \odot t\right)=\mathbf{I}_{\mathrm{A}}(\phi(s) \odot \phi(t))
$$

$$
\mathrm{I}_{\mathrm{A}} \phi^{\prime}(s \odot t) \geq \min \left\{\mathbf{I}_{\mathrm{A}}(\phi(s)), \mathbf{I}_{\mathrm{A}}(\phi(t))\right\}
$$

$$
\mathrm{I}_{\mathrm{A}}^{\phi}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(s)\right\}
$$

$\mathrm{F}_{\mathrm{A}}{ }^{\phi}(s \odot t)=\mathrm{F}_{\mathrm{A}}(\phi(s \odot t))$
$\mathrm{F}_{\mathrm{A}}{ }^{\phi}(s \odot t)=\mathrm{F}_{\mathrm{A}}(\phi(s) \odot \phi(t))$
$\mathrm{F}_{\mathrm{A}}{ }^{\phi}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(\phi(s)), \mathrm{F}_{\mathrm{A}}(\phi(t))\right\}$
$\mathrm{F}_{\mathrm{A}}{ }^{\phi}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(s)\right\}$.
Hence $\mathrm{A}^{\phi}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K_{1}.

Proposition 2.4. Let $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ be an epimorphism of \boldsymbol{K}-algebras. If $\mathrm{A}^{\phi}=\left(\mathrm{T}_{\mathrm{A}}{ }^{\phi}, \mathrm{I}_{\mathrm{A}}{ }^{\phi}, \mathrm{F}_{\mathrm{A}}{ }^{\phi}\right)$ be a neutrosophic pythogorean K-sub algebra of K_{2}, then $A=\left(\mathrm{T}_{\mathrm{A}}, \mathbf{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is neutrosophic K -sub algebra of K_{1}.
Proof. Since there exist $s \in G_{1}$ such that $t=\phi(s)$, for any $t \in G_{2}$
$\mathrm{T}_{\mathrm{A}}(t)=\mathrm{T}_{\mathrm{A}}(\phi(s))=\mathrm{T} \phi(s)_{\mathrm{A}} \quad \leq \mathrm{T} \phi\left(e_{1}\right)_{\mathrm{A}} \quad=\mathrm{T}_{\mathrm{A}}\left(\phi\left(e_{1}\right)\right)=\mathrm{T}_{\mathrm{A}}\left(e_{2}\right)$,
$\mathbf{I}_{\mathrm{A}}(t)=\mathbf{I}_{\mathrm{A}}(\phi(s))=\mathbf{I}^{\phi(s)} \mathrm{A} \quad \leq \mathbf{I}^{\phi\left(e^{1)}\right.} \mathrm{A} \quad=\mathbf{I}_{\mathrm{A}}\left(\phi\left(e_{1}\right)\right)=\mathbf{I}_{\mathrm{A}}\left(e_{2}\right)$,
$\mathrm{F}_{\mathrm{A}}(t)=\mathrm{F}_{\mathrm{A}}(\phi(s))=\mathrm{F}^{\phi(s)}{ }_{\mathrm{A}} \quad \geq \mathrm{F}^{\phi(e 1)} \mathrm{A} \quad=\mathrm{F}_{\mathrm{A}}\left(\phi\left(e_{1}\right)\right)=\mathrm{F}_{\mathrm{A}}\left(e_{2}\right)$.

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{A}}{ }^{\phi}(s \odot t)=\mathrm{T}_{\mathrm{A}}(\phi(s \odot t)) \\
& \mathrm{T}_{\mathrm{A}}{ }^{\phi}(s \odot t)=\mathrm{T}_{\mathrm{A}}(\phi(s) \odot \phi(t)) \\
& \mathrm{T}_{\mathrm{A}}{ }^{\phi}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(\phi(s)), \mathrm{T}_{\mathrm{A}}(\phi(t))\right\} \\
& \mathrm{T}_{\mathrm{A}} \phi(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(s)\right\},
\end{aligned}
$$

for any $s, t \in G_{2}, u, v \in G_{1}$ such that $s=\phi(u)$ and $t=\phi(v)$. It follows that
$\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{A}}(\phi(u \odot v))$
$\mathrm{T}_{\mathrm{A}}(s \odot t)=\mathrm{T}_{\mathrm{A}}(u \odot v)$
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}{ }^{\phi}(u), \mathrm{T}_{\mathrm{A}}{ }^{\phi}(v)\right\}$
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(\phi(u)), \mathrm{T}_{\mathrm{A}}(\phi(v))\right\}$
$\mathrm{T}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{T}_{\mathrm{A}}(s), \mathrm{T}_{\mathrm{A}}(t)\right\}$,
$\mathbf{I}_{\mathrm{A}}(s \odot t)=\mathbf{I}_{\mathrm{A}}(\phi(u \odot v))$
$\mathrm{I}_{\mathrm{A}}(s \odot t)=\mathrm{I}_{\mathrm{A}}(u \odot v)$
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}^{\phi}}(u), \mathrm{I}_{\mathrm{A}^{\phi}}(v)\right\}$
$\mathbf{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathbf{I}_{\mathrm{A}}(\phi(u)), \mathbf{I}_{\mathrm{A}}(\phi(v))\right\}$
$\mathrm{I}_{\mathrm{A}}(s \odot t) \geq \min \left\{\mathrm{I}_{\mathrm{A}}(s), \mathrm{I}_{\mathrm{A}}(t)\right\}$,
$\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{A}}(\phi(u \odot v))$
$\mathrm{F}_{\mathrm{A}}(s \odot t)=\mathrm{F}_{\mathrm{A}}(u \odot v)$
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}{ }^{\phi}(u), \mathrm{F}_{\mathrm{A}}{ }^{\phi}(v)\right\}$
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(\phi(u)), \mathrm{F}_{\mathrm{A}}(\phi(v))\right\}$
$\mathrm{F}_{\mathrm{A}}(s \odot t) \leq \max \left\{\mathrm{F}_{\mathrm{A}}(s), \mathrm{F}_{\mathrm{A}}(t)\right\}$.
Hence $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ is a neutrosophic pythogorean K-sub algebra of K_{2}. From above two propositions we obtain the following theorem.

Theorem 2.7. Let $\phi: \mathrm{K}_{1} \rightarrow \mathrm{~K}_{2}$ be an epimorphism of K-algebras. Then $\mathrm{A}^{\phi}=\left(\mathrm{T}_{\mathrm{A}} \phi, \mathrm{I}_{\mathrm{A}}{ }^{\phi}, \mathrm{F}_{\mathrm{A}}{ }^{\phi}\right)$ is a neutrosophic pythogorean \boldsymbol{K}-sub algebra of K_{1} if and only if $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathbf{I}_{\mathrm{A}}, \mathrm{F}_{\mathbf{A}}\right)$ is neutrosophic pythogorean K-sub algebra of K_{2}.
Definition 2.7. A neutrosophic pythogorean K-sub algebra $\mathrm{A}=\left(\mathrm{T}_{\mathrm{A}}, \mathrm{I}_{\mathrm{A}}, \mathrm{F}_{\mathrm{A}}\right)$ of a K-algebra K is called characteristic if $\mathrm{T}_{\mathrm{A}}(\phi(s))=\mathrm{T}_{\mathrm{A}}(s), \mathbf{I}_{\mathrm{A}}(\phi(s))=\mathbf{I}_{\mathrm{A}}(s)$ and $\mathrm{F}_{\mathrm{A}}(\phi(s))=\mathrm{F}_{\mathrm{A}}(s)$, for all $s \in G$ and $\phi \in \operatorname{Aut}(\mathrm{K})$.

Definition 2.8. A K-sub algebra S of a K-algebra K is said to be fully invariant if $\phi(S)$ $\subseteq S$, for all $\phi \in \operatorname{End}(\mathrm{K})$, where $\operatorname{End}(\mathrm{K})$ is the set of all endomorphisms of a K-algebra K. A neutrosophic pythogorean \boldsymbol{K}-sub algebra $\mathrm{A}=\left(\mathrm{T}_{\mathbf{A}}, \mathbf{I}_{\mathbf{A}}, \mathrm{F}_{\mathbf{A}}^{-}\right)$of a \boldsymbol{K}-algebra K is called fully invariant if $\mathrm{T}_{\mathrm{A}}(\phi(s)) \leq \mathrm{T}_{\mathrm{A}}(s), \mathbf{I}_{\mathrm{A}}(\phi(s)) \leq \mathbf{I}_{\mathrm{A}}(s)$ and $\mathrm{F}_{\mathrm{A}}(\phi(s)) \leq \mathrm{F}_{\mathrm{A}}(s)$, for all $s \in G$ and $\phi \in$ $\operatorname{End}(\mathrm{K})$.

Definition 2.9. Let $A_{1}=\left(T_{A 1}, I_{A 1}, F_{A 1}\right)$ and $A_{2}=\left(T_{A 2}, I_{A 2}, F_{A 2}\right)$ be neutrosophic pythogorean K-sub algebras of K. Then $\mathrm{A}_{1}=\left(\mathrm{T}_{\mathrm{A} 1}, \mathrm{I}_{\mathrm{A} 1}, \mathrm{~A}_{1}\right)$ is said to be the same type of $\mathrm{A}_{2}=\left(\mathrm{T}_{\mathrm{A} 2}, \mathrm{I}_{\mathrm{A} 2}, \mathrm{~F}_{\mathrm{A} 2}\right)$ if there exist $\phi \in \operatorname{Aut}(\mathrm{K})$ such that $\mathrm{A}_{1}=\mathrm{A}_{2} \circ \phi$, i.e., $\mathrm{T}_{\mathrm{A} 1}(s)=\mathrm{T}_{\mathrm{A} 2}$ $(\phi(s)), \mathrm{I}_{\mathrm{A} 1}(s)=\mathrm{I}_{\mathrm{A} 2}(\phi(s))$ and $\mathrm{F}_{\mathrm{A} 1}(s)=\mathrm{F}_{\mathrm{A} 2}(\phi(s))$, for all $s \in G$.

Theorem 2.8. Let $\mathrm{A}_{1}=\left(\mathrm{T}_{\mathrm{A} 1}, \mathrm{I}_{\mathrm{A} 1}, \mathrm{~F}_{\mathrm{A} 1}\right)$ and $\mathrm{A}_{2}=\left(\mathrm{T}_{\mathrm{A} 2}, \mathrm{I}_{\mathrm{A} 2}, \mathrm{~F}_{\mathrm{A} 2}\right)$ be neutrosophic pythogorean K - sub algebras of K. Then $\mathrm{A}_{1}=\left(\mathrm{T}_{\mathrm{A} 1}, \mathrm{I}_{\mathrm{A} 1}, \mathrm{~F}_{\mathrm{A} 1}\right)$ is a neutrosophic pythogorean K sub algebra having the same type of $\mathrm{A}_{2}=\left(\mathrm{T}_{\mathrm{A} 2}, \mathrm{I}_{\mathrm{A} 2}, \mathrm{~F}_{\mathrm{A} 2}\right)$ if and only if A_{1} is isomorphic to A_{2}.
Proof. Sufficient condition holds trivially so we only need to prove the necessary condition. Let $\mathrm{A}_{1}=$ $\left(\mathrm{T}_{\mathrm{A} 1}, \mathrm{I}_{\mathrm{A} 1}, \mathrm{~F}_{\mathrm{A} 1}\right)$ be a neutrosophic pythogorean K-sub algebra having same type of $\mathrm{A}_{2}=\left(\mathrm{T}_{\mathrm{A} 2}, \mathrm{I}_{\mathrm{A} 2}\right.$,
$\left.\mathrm{F}_{\mathrm{A} 2}\right)$. Then there exist $\phi \in \operatorname{Aut}(\mathrm{K})$ such that $\mathrm{T}_{\mathrm{A} 1}(s)=\mathrm{T}_{\mathrm{A} 2}(\phi(s)), \mathrm{I}_{\mathrm{A} 1}(s)=\mathrm{I}_{\mathrm{A} 2}(\phi(s))$ and $\mathrm{F}_{\mathrm{A} 1}=\mathrm{F}_{\mathrm{A} 2}(\phi(s))$, for all $s \in G$. Let $f: \mathrm{A}_{1}(K) \rightarrow \mathrm{A}_{2}(K)$ be a mapping defined by $f\left(\mathrm{~A}_{l}(s)\right)=\mathrm{A}_{2}$ $(\phi(s))$, for all $s \in G$, that is, $f\left(\mathrm{~T}_{\mathrm{A} l}(s)\right)=\mathrm{T}_{\mathrm{A} 2}(\phi(s)), f\left(\mathrm{I}_{\mathrm{A}} l(s)\right)=\mathrm{I}_{\mathrm{A} 2}(\phi(s))$ and $f\left(\mathrm{~F}_{\mathrm{A} l}(s)\right)=$ $\mathrm{F}_{\mathrm{A} 2}(\phi(s))$, for all $s \in G$.
Clearly, f is surjective. Also, f is injective because if $f\left(\mathrm{~T}_{\mathrm{A}} I(s)\right)=f\left(\mathrm{~T}_{\mathrm{A} I}(t)\right)$, for all $s, t \in G$, then $\mathrm{T}_{\mathrm{A} 2}(\phi(s))=\mathrm{T}_{\mathrm{A} 2}(\phi(t))$ and we have $\mathrm{T}_{\mathrm{A} 1}(s)=\mathrm{T}_{\mathrm{A} 1}(t)$. Similarly, $\mathrm{I}_{\mathrm{A} 1}(s)=\mathrm{I}_{\mathrm{A} 1}(t), \mathrm{F}_{\mathrm{A} 1}(s)$ $=\mathrm{F}_{\mathrm{A} 1}(t)$.
Therefore, f is a homomorphism, for $s, t \in G$

$$
\begin{aligned}
& f\left(\mathrm{~T}_{\mathrm{A}} l(s \odot t)\right)=\mathrm{T}_{\mathrm{A} 2}(\phi(s \odot t))=\mathrm{T}_{\mathrm{A} 2}(\phi(s) \odot \phi(t)), \\
& f\left(\mathrm{I}_{\mathrm{A}} l(s \odot t)\right)=\mathrm{I}_{\mathrm{A} 2}(\phi(s \odot t))=\mathrm{I}_{\mathrm{A} 2}(\phi(s) \odot \phi(t)), \\
& f\left(\mathrm{~F}_{\mathrm{A}} 1(s \odot t)\right)=\mathrm{F}_{\mathrm{A} 2}(\phi(s \odot t))=\mathrm{F}_{\mathrm{A} 2}(\phi(s) \odot \phi(t))
\end{aligned}
$$

Hence $\mathrm{A}_{1}=\left(\mathrm{T}_{\mathrm{A} 1}, \mathrm{I}_{\mathrm{A} 1}, \mathrm{~F}_{\mathrm{A} 1}\right)$ is isomorphic to $\mathrm{A}_{2}=\left(\mathrm{T}_{\mathrm{A} 2}, \mathrm{I}_{\mathrm{A}} 2, \mathrm{~F}_{\mathrm{A} 2}\right)$. Hence the proof.

References

1. A. A. A. Agboola and B. Davvaz, Introduction to neutrosophic BCI/BCK-algebras, International Journal of Mathematics and Mathematical Sciences, Article ID 370267, (2015) 1-6.
2. M. Akram, K. H. Dar and P. K. Shum, Interval-valued (α, β)-fuzzy K-algebras, Applied Soft Computing, 11 (1) (2011) 1213-1222.
3. M. Akram, B. Davvaz and F. Feng, Intutionistic fuzzy soft K-algebras, Mathematics in Computer Science, 7 (3) (2013) 353-365.
4. M. Akram, K. H. Dar, Y. B. Jun and E. H. Roh, Fuzzy structures of $K(G)$-algebra, Southeast Asian Bulletinof Mathematics, 31 (4) (2007) 625-637.
5. M. Akram and K. H. Dar, Generalized fuzzy K-algebras, VDM Verlag Dr. Miller, 2010, ISBN-13: 978-3639270952.
6. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986) 87 - 96.
7. Bakhat, S. K. and P. Das, (\in, \in Vq)-fuzzy subgroup, Fuzzy Sets and Systems 80 (3) (1996) 359 368.
8.R.A. Borzooei, H. Farahani and M. Moniri, Neutrosophic deductive filters on BL-algebras, Journal of Intelligent \& Fuzzy Systems,26(6)(2014), 2993-3004.
8. K.H. Dar and M. Akram, On a K-algebra built on a group, Southeast Asian Bulletin of Mathematics, 29(1) (2005) 41-49.
9. K.H. Dar and M. Akram, Characterization of a $K(G)$-algebra by self maps, Southeast Asian Bulletin of Mathematics, 28 (4) (2004) 601-610.
10. K.H. Dar and M. Akram, On K-homomorphisms of K-algebras, International Mathematical Forum, 46(2007) 2283-2293.
11. D. Coker and M. Demirci, On intuitionistic fuzzy points, Notes on intuitionistic fuzzy sets, 1(2) (1995) $79-84$.
12. Y. B. Jun, S.-Z. Song, F. Smarandache and H. Bordbar, Neutrosophic quadruple BCK/BCI-algebras, Axioms, 7 (2) (2018) 41.
13. P. M. Pu and Y. M. Liu, Fuzzy topology, I. Neighbourhood structure of a fuzzy point and Moore-Smithconvergence, Journal of Mathematical Analysis and Applications, 76 (2) (1980) 571 599.
14. F. Smarandache, Neutrosophy neutrosophic pythogorean probability, set, and logic, American Research Press, Rehoboth, USA, (1998).
15. H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderraman, Single valued neutrosophic pythogorean sets, Multispace and Multistruct, 4 (2010) 410-413.
16. C. K. Wong, Fuzzy points and local properties of fuzzy topology, Jounal of Mathematical Analysis and Applications, 46 (1974), 316-328.
17. X. Yuan, C. Zhang and Y. Ren, Generalized fuzzy groups and many-valued implications, Fuzzy sets andSystems, 138 (1) (2003) 205 - 211.
18. L.A. Zadeh, Fuzzy sets, Information and Control, 8(3) (1965), 338 - 353.

