ISSN: 2320-2882

IJCRT.ORG

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Certain Notions of Neutroscopic Pythogorean *K*-Subalgebras

S.Ramesh Kumar¹, S. Poorani², R. Radha³

¹Department of Mathematics, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. ²Research Scholoar, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu, India. ³Research Scholoar, Nirmala College for women, Coimbatore, Tamil Nadu, India.

Abstract

We apply the notion of neutrosophic Pythagorean sets to *K*-algebras. We develop the concept of neutrosophic pythogorean *K*-sub algebras, and present some of their properties. Moreover, we study the behavior of valued neutrosophic pythogorean *K*-sub algebras under homomorphism. **Keywords:** neutrosophic pythogorean sets, *K*-sub algebras, homomorphism.

Introduction

A new kind of logical algebra, known as K-algebra, was introduced by Dar and Akram [9]. A Kalgebra was built on a group G by adjoining the induced binary operation on G. The group G is particularly of the type in which each non-identity element is not of order 2. This algebraic structure is, in general, non-commutative and non-associative with right identity element [5, 10, 11]. Akram et.al [2–4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers worldwide. The concepts and results of K-algebras have been broadened to the fuzzy setting frames by applying Zadeh's fuzzy set theory and its generalizations, namely, interval- valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, bipolar fuzzy sets and vague sets. In handling information regarding various aspects of uncertainty, non-classical logic (a great extension and development of classical logic) is considered to be a more powerful technique than the classical logic. The non- classical logic has nowadays become a useful tool in computer science. Moreover, non-classical logic deals with fuzzy information and uncertainty. In 1998, Smarandache [15] introduced neutrosophic sets as a generalization of fuzzy sets [19] and intuitionistic fuzzy sets [6]. A neutrosophic set is identified by three functions called truth- membership (T), indeterminacymembership (I) and falsity-membership (F) whose values are real standard or non-standard subset of unit interval]⁻⁰, 1⁺[, where $^{-0} = 0$ ϵ , 1⁺ = 1 + ϵ , ϵ is an infinitesimal number. To apply neutrosophic set in real-life problems more conveniently, Smarandache [15] and Wang et al. [16] defined single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a singlevalued neutrosophic set is an instance of neutrosophic set, and can be used expediently to deal with realworld problems, especially in decision support. Algebraic structures have a vital place with vast applications in various disciplines. Neutrosophic set theory has been applied to algebraic structures [1, 8, 13]. In this research article, we introduce the notion of neutrosophic pythogorean K-subalgebra and investigate some of their properties. We discuss K-sub algebra in terms of level sets using neutrosophic pythogorean environment. We study the homomorphisms between the neutrosophic pythogorean Ksub algebras. We discuss characteristic K-sub algebras and fully invariant -sub algebras.

6.8

Neutrosophic pythogorean K-algebras

The concept of *K*-algebra was developed by Dar and Akram in [14].

Definition 2.1. Let (G, \cdot, e) be a group in which each non-identity element is not of order 2. Then a K-algebra is a structure $K = (G, \cdot, \odot, e)$ on a group G in which induced binary operation \odot : $G \times G \to G$ is defined by $\odot(x, y) = x \odot y = x.y^{-1}$ and satisfies the following axioms: (i) $(x \odot y) \odot (x \odot z) = (x \odot ((e \odot z) \odot (e \odot y))) \odot x$, (ii) $x \odot (x \odot y) = (x \odot (e \odot y)) \odot x$, (iii) $(x \odot x) = e$, (iv) $(x \odot e) = x$,

(v) $(e \odot x) = x^{-1}$, for all $x, y, z \in G$.

Definition 2.2. [16] Let Z be a space of objects with a general element $z \in Z$. A neutrosophic pythogorean set A in Z is characterized by three membership functions, T_A-truth membership function, I_A-indeterminacy membership function and F_A-falsity membership function, where T_A(z), I_A(z), F_A(z) \in [0, 1], for all $z \in Z$.

That is $T_A : Z \to [0, 1], I_A : Z \to [0, 1], F_A : Z \to [0, 1]$ with no restriction on the sum of these three components.

A can also be written as $A = \{ \langle z, T_A(z), I_A(z), F_A(z) \rangle | z \in Z \}$.

Definition 2.3. A neutrosophic pythogorean set $A = (T_A, I_A, F_A)$ in a *K*-algebra K is called a neutrosophic pythogorean *K*-sub algebra of K if it satisfy the following conditions:

 $T_A(s \odot t) \ge \min\{T_A(s), T_A(t)\},\$

 $I_A(s \odot t) \geq \min\{I_A(s), I_A(t)\},\$

 $F_A(s \odot t) \le \max{F_A(s), F_A(t)}, \text{ for all } s, t \in G.$

Note that $T_A(e) \ge T_A(s)$, $I_A(e) \ge I_A(s)$, $F_A(e) \le F_A(s)$, for all $s \in G$.

 x^{8} } is the cyclic group of order 9 and Caley's table for \odot is given as:

\odot	e	Х	x ²	x ³	x ⁴	x ⁵	x ⁶	x ⁷	x ⁸
е	e	x ⁸	x ⁷	x ⁶	x ⁵	x ⁴	x ³	x^2	Х
х	Х	e	x ⁶	\mathbf{x}^7	x ⁶	x ⁵	x ⁴	x ³	\mathbf{x}^2
x ²	x ²	\mathbf{x}^2	e	x ⁸	x ⁷	x ⁶	x ⁵	x ⁴	x ³
x ³	x ³	x ³	Х	e	x ⁸	x ⁷	x ⁶	x ⁵	x ⁴
x ⁴	x ⁴	x ⁴	x ²	Х	e	x ⁸	x ⁷	x ⁶	x ⁵
x ⁵	x ⁵	x ⁵	x ³	\mathbf{x}^2	Х	e	x ⁸	x ⁷	x ⁶
x ⁶	x ⁶	x ⁶	x ⁴	x ³	\mathbf{x}^2	Х	e	x ⁸	x ⁷
x ⁷	x ⁷	x ⁷	x ⁵	x ⁴	x^3	x ²	Х	e	x ⁸
x ⁸	x ⁸	\mathbf{x}^2	x ⁶	x ⁵	x ⁴	x ³	x^2	Х	e

www.ijcrt.org

We define a neutrosophic pythogorean set $A = (T_A, I_A, F_A)$ in *K*-algebra as follows: $T_A(e) = 0.7$, $I_A(e) = 0.6$, $F_A(e) = 0.3$,

 $T_A(s) = 0.1$, $I_A(s) = 0.2$, $F_A(s) = 0.5$, for all $s \neq e \in G$.

Clearly, $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean *K*-sub algebra of K.

Example 2.2. Consider $K = (G, \cdot, \odot, e)$ be a *K*-algebra on dihedral group *D*4 given as $G = \{e, a, b, c, x, y, u, v\}$, where c = ab, $x = a^2$, $y = a^3$, $u = a^2b$, $v = a^3b$ and Caley's table for \odot is given as:

\odot	е	а	b	С	x	у	и	v
е	е	У	b	С	x	а	и	v
а	а	е	С	и	У	x	v	b
b	b	С	е	У	и	v b	x	а
С	С	и	а	е	v	b	У	x
x	x	а	и	v	е	y	b	С
У	У	x	ν	b	а	е	С	и
и	и	v	х	а	b	С	е	У
v	v	b	у	x	С	и	а	е

We define a neutrosophic pythogorean set $A = (T_A, I_A, F_A)$ in K-algebra as follows: $T_A(e) = 0.8$, $I_A(e) = 0.2$, $F_A(e) = 0.2$,

 $T_A(s) = 0.5, I_A(s) = 0.1, F_A(s) = 0.3$, for all $s \neq e \in G$.

By routine calculations, it can be verified that A is a neutrosophic pythogorean K-sub algebra ok K.

Proposition 2.1. If $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean K-sub algebra of K, then

1.
$$(\forall s, t \in G), (T_A(s \odot t) = T_A(t) \Rightarrow T_A(s) = T_A(e)). (\forall s, t \in G)(T_A(s) = T_A(e))$$

$$\Rightarrow T_{\mathbf{A}}(s \odot t) \geq T_{\mathbf{A}}(t)).$$

2. $(\forall s, t \in G), (\mathbf{I}_{\mathbf{A}}(s \odot t) = \mathbf{I}_{\mathbf{A}}(t) \Rightarrow \mathbf{I}_{\mathbf{A}}(s) = \mathbf{I}_{\mathbf{A}}(e)). (\forall s, t \in G)(\mathbf{I}_{\mathbf{A}}(s) = \mathbf{I}_{\mathbf{A}}(e))$

$$\Rightarrow \mathbf{I}_{\mathbf{A}}(s \odot t) \geq \mathbf{I}_{\mathbf{A}}(t)).$$

3. $(\forall s, t \in G), (F_A(s \odot t) = F_A(t) \Rightarrow F_A(s) = F_A(e)). (\forall s, t \in G)(F_A(s) = F_A(e))$ $\Rightarrow F_A(s \odot t) \le F_A(t)).$

Proof. 1. Assume that $T_A(s \odot t) = T_A(t)$, for all $s, t \in G$. Taking t = e and using (iii) of Definition 2.1, we have $T_A(s) = T_A(s \odot e) = T_A(e)$. Let for $s, t \in G$ be such that $T_A(s) = T_A(e)$. Then $T_A(s \odot t) \ge \min\{T_A(s), T_A(t)\} = \min\{T_A(e), T_A(t)\} = T_A(t)$.

Again assume that $I_A(s \odot t) = I_A(t)$, for all $s, t \in G$. Taking t = e and by (iii) of Definition 2.1, we have $I_A(s) = I_A(s \odot e) = I_A(e)$. Also let $s, t \in G$ be such that $I_A(s) = I_A(e)$. Then $I_A(s \odot t) \ge \min\{I_A(s), I_A(t)\} = \min\{I_A(e), I_A(t)\} = I_A(t)$.

Consider that $F_A(s \odot t) = F_A(t)$, for all $s, t \in G$. Taking t = e and again by (iii) of Definition 2.1, we have $F_A(s) = F_A(s \odot e) = F_A(e)$. Let $s, t \in G$ be such that $F_A(s) = F_{(e)}$.

Then $A(s \ t)F$ (max A(F), $A(t) \models max(F) = A(t)$. This completes the proof.

Definition 2.4. Let $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean set in a *K*-algebra K and let $(\alpha, \beta, \gamma) \in [0, 1] \times [0, 1] \times [0, 1]$ with $\alpha + \beta + \gamma \leq 3$. Then level subsets of A are defined as: $A_{(\alpha, \beta, \gamma)} = \{s \in G \mid T_A(s) \geq \alpha, I_A(s) \geq \beta, F_A(s) \leq \gamma\}$ $A_{(\alpha, \beta, \gamma)} = \{s \in G \mid T_A(s) \geq \alpha\} \cap \{s \in G \mid I_A(s) \geq \beta\} \cap \{s \in G \mid F_A(s) \leq \gamma\}$

 $A_{(\alpha,\beta,\gamma)} = \bigcup(T_A, \alpha) \cap \bigcup (I_A, \beta) \cap L(F_A, \gamma)$ are called (α, β, γ) -level subsets of neutrosophic pythogorean set A.

www.ijcrt.org

The set of all $(\alpha, \beta, \gamma) \in \text{Im}(T_A) \times \text{Im}(I_A) \times \text{Im}(I_A)$ is known as image of $A = (T_A, I_A, F_A)$. The set $A_{(\alpha,\beta,\gamma)} = \{s \in G \mid T_A(s) > \alpha, I_A(s) > \beta, F_A(s) < \gamma\}$ is known as strong (α, β, γ) - level subset of A.

Proposition 2.2. If $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean *K*-sub algebra of K, then the level subsets $\cup(T_A, \alpha) = \{s \in G \mid T_A(s) \ge \alpha\}$, $\cup'(I_A, \beta) = \{s \in G \mid I_A(s) \ge \beta\}$ and $L(F_A, \gamma) = \{s \in G \mid F_A(s) \le \gamma\}$ are k-sub algebras of K, for every $(\alpha, \beta, \gamma) \in Im(T_A) \times Im(I_A) \times Im(F_A)$ $\subseteq [0, 1]$, where $Im(T_A)$, $Im(I_A)$ and $Im(F_A)$ are sets of values of T(A), I(A) and F(A), respectively.

Proof. Assume that $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean *K*-sub algebra of K and let $(\alpha, \beta, \gamma) \in$

Im(T_A) × Im(**I**_A) × Im(**F**_A) be such that \cup (T_A, α) $\models \emptyset$, \cup (**I**_A, β) $\models \emptyset$ and L(F_A, γ) $\neq \emptyset$. Now to prove that \cup , \cup and L are level K-sub algebras. Let for $s, t \in \cup$ (T_A, α), T_A(s) $\geq \alpha$ and T_A(t) $\geq \alpha$. It follows from Definition 3.1 that T_A($s \odot t$) $\geq \min$ {T_A(s), T_A(t)} $\geq \alpha$. It implies that s $\odot t \in \cup$ (T_A, α). Hence \cup (T_A, α) is a level K-sub algebra of K. Similar result can be proved for \cup (**I**_A, β) and L(F_A, γ).

Theorem 2.1. Let $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean set in *K*-algebra K. Then $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean *K*-sub algebra of K if and only if $A_{(\alpha,\beta,\gamma)}$ is a *K*-sub algebra of K, for every $(\alpha, \beta, \gamma) \in Im(T_A) \times Im(I_A) \times Im(F_A)$ with $\alpha + \beta + \gamma \leq 3$.

Proof. Let $A = (T_A, I_A, F_A)$ be a pythogorean set in a K-algebra K. Assume that $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean K-sub algebra of K. i.e., the following three conditions of Definition 3.1 hold.

 $T_{A}(s \odot t) \ge \min\{T_{A}(s), T_{A}(t)\},\$ $I_{A}(s \odot t) \ge \min\{I_{A}(s), I_{A}(t)\},\$ $F_{A}(s \odot t) \le \max\{F_{A}(s), F_{A}(t)\}, \text{ for all } s, t \in G.$ $T_{A}(e) \ge T_{A}(s), I_{A}(e) \ge I_{A}(s), F_{A}(e) \le F_{A}(s), \text{ for all } s \in G.$ Let for $(\alpha, \beta, \gamma) \in \operatorname{Im}(T_{A}) \times \operatorname{Im}(I_{A}) \times \operatorname{Im}(F_{A})$ with $\alpha + \beta + \gamma \le 3$ be such that $A_{(\alpha, \beta, \gamma)} \neq \emptyset$. Let $s, t \in A_{(\alpha, \beta, \gamma)}$ be such that

$$\begin{split} T_{A}(s) &\geq \alpha, \ T_{A}(t) \geq \alpha \ , \\ I_{A}(s) &\geq \beta, \ I_{A}(t) \geq \beta \ , \\ F_{A}(s) &\leq \gamma, \ F_{A}(t) \leq \gamma \ . \end{split}$$

Without loss of generality we can assume that $\alpha \le \alpha$, $\beta \le \beta$ and $\gamma \ge \gamma$. It follows from Definition 3.1 that $T_{\lambda}(s \odot t) \ge \alpha = \min\{T_{\lambda}(s), T_{\lambda}(t)\}$

 $T_{A}(s \odot t) \ge \alpha = \min\{T_{A}(s), T_{A}(t)\},\$ $I_{A}(s \odot t) \ge \beta = \min\{I_{A}(s), I_{A}(t)\},\$ $F_{A}(s \odot t) \le \gamma = \max\{F_{A}(s), F_{A}(t)\}.\$

It implies that $s \odot t \in A_{(\alpha,\beta,\gamma)}$. So, $A_{(\alpha,\beta,\gamma)}$ is a *K*-sub algebra of K.

Conversely, we suppose that $A_{(\alpha,\beta,\gamma)}$ is a *K*-sub algebra of K. If the condition of the Definition 3.1 is not true, then there exist $u, v \in G$ such that

 $T_{A}(u \odot v) < \min \{T_{A}(u), T_{A}(v)\},\$ $I_{A}(u \odot v) < \min \{I_{A}(u), I_{A}(v)\},\$ $F_{A}(u \odot v) > \max\{F_{A}(u), F_{A}(v)\}.\$

Taking

 $\alpha_1 = {}^1(\mathrm{T}_{\mathbb{A}}(u \odot v) + \min\{\mathrm{T}_{\mathrm{A}}(u), \mathrm{T}_{\mathrm{A}}(v)\}),$

 $\beta_1 = {}^1(\mathbf{I}_{\underline{A}}(u \odot v) + \min\{\mathbf{I}_{\underline{A}}(u), \mathbf{I}_{\underline{A}}(v)\}),$

 $\gamma_1 = {}^1(\mathbf{F}_{\mathbf{A}}(u \odot v) + \min\{\mathbf{F}_{\mathbf{A}}(u), \mathbf{F}_{\mathbf{A}}(v)\}).$

We have $T_A(u \odot v) < \alpha_1 < \min\{T_A(u), T_A(v)\}$, $I_A(u \odot v) < \beta_1 < \min\{I_A(u), I_A(v)\}$ and $F_A(u \odot v) > \gamma_1 > \max\{F_A(u), F_A(v)\}$. It implies that $u, v \in A_{(\alpha,\beta,\gamma)}$ and $u \odot v \notin A_{(\alpha,\beta,\gamma)}$, a contradiction. Therefore, the condition of Definition 3.1 is true. Hence $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean k-sub algebra of K.

Theorem 2.2. Let $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean k-sub algebra and $(\alpha_1, \beta_1, \gamma_1)$, $(\alpha_2, \beta_2, \gamma_2) \in Im(T_A) \times Im(I_A) \times Im(F_A)$ with $\alpha_j + \beta_j + \gamma_j \leq 3$ for j = 1, 2. Then $A_{(\alpha_1, \beta_1, \gamma_1)} = A_{(\alpha_2, \beta_2, \gamma_2)}$ if $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$.

Proof. If $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$, then clearly $A_{(\alpha_1, \beta_1, \gamma_1)} = A_{(\alpha_2, \beta_2, \gamma_2)}$.

Assume that $A_{(\alpha 1,\beta 1,\gamma 1)} = A_{(\alpha 2,\beta 2,\gamma 2)}$. Since $(\alpha_1, \beta_1, \gamma_1) \in Im(T_A) \times Im(I_A) \times Im(F_A)$, there exist $s \in G$ such that $T_A(s) = \alpha_1$, $I_A(s) = \beta_1$ and $F_A(s) = \gamma_1$. It follows that $s \in A_{(\alpha 1,\beta 1,\gamma 1)} = A_{(\alpha 2,\beta 2,\gamma 2)}$. So that $\alpha_1 = T_A(s) \ge \alpha_2$, $\beta_1 = I_A(s) \ge \beta_2$ and $\gamma_1 = F_A(s) \le \gamma_2$.

Also $(\alpha_2, \beta_2, \gamma_2) \in \text{Im}(T_A) \times \text{Im}(I_A) \times \text{Im}(F_A)$, there exist $t \in G$ such that $T_A(t) = \alpha_2$, $I_A(t) = \beta_2$ and $F_A(t) = \gamma_2$. It follows that $t \in A_{(\alpha_2, \beta_2, \gamma_2)} = A_{(\alpha_1, \beta_1, \gamma_1)}$.

So that $\alpha_2 = T_A(t) \ge \alpha_1$, $\beta_2 = I_A(t) \ge \beta_1$ and $\gamma_2 = F_A(t) \le \gamma_1$. Hence $(\alpha_1, \beta_1, \gamma_1) = (\alpha_2, \beta_2, \gamma_2)$.

Theorem 2.3. Let H be a K-sub algebra of K-algebra K. Then there exist neutrosophic pythogorean K- sub algebra A = (T_A, I_A, F_A) of K-algebra K such that A = $(T_A, I_A, F_A) = H$, for some $\alpha, \beta \in (0, 1], \gamma \in [0, 1)$.

Proof. Let $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean set in K-algebra K given by

$$T_A(s) = \begin{cases} \alpha \epsilon(0,1] & \text{if seH.} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} I_A(s) &= \begin{cases} \beta \epsilon(0,1] & if \ s \epsilon H. \\ 0 & otherwise \end{cases} \\ F_A(s) &= \begin{cases} \gamma \epsilon(0,1] & if \ s \epsilon H. \\ 0 & otherwise \end{cases} \end{split}$$

Let $s, t \in G$. If $s, t \in H$, then $s \odot t \in H$ and so $T_A(s \odot t) \ge \min\{T_A(s), T_A(t)\},$ $I_A(s \odot t) \ge \min\{I_A(s), I_A(t)\},$ $F_A(s \odot t) \le \max\{F_A(s), F_A(t)\}.$

But if $s \notin H$ or $t \notin H$, then $T_A(s) = 0$ or $T_A(t)$, $I_A(s) = 0$ or $I_A(t)$ and $F_A(s) = 0$ or $F_A(t)$. It follows that

 $T_A(s \odot t) \ge \min\{T_A(s), T_A(t)\}, I_A(s \odot t) \ge \min\{I_A(s), I_A(t)\}, F_A(s \odot t) \le \max\{F_A(s), F_A(t)\}.$ Hence $A = (T_A, I_A, F_A)$ is a SVN *K*-sub algebra of K. Consequently $A_{(\alpha, \beta, \gamma)} = H.$

The above Theorem shows that any *K*-sub algebra of K can be perceived as a level *K*-sub algebra of someneutrosophic pythogorean *K*-sub algebras of K.

Theorem 2.4.

Let K be a K-algebra. Given a chain of K-sub algebras: $A_0 \subset A_1 \subset A_2 \subset \dots \subset A_n = G$. Then there exist a neutrosophic pythogorean K-sub algebra whose level K-sub algebras are exactly the Ksub algebras in this chain.

Proof. Let $\{\alpha_k \mid k = 0, 1, ..., n\}$, $\{\beta_k \mid k = 0, 1, ..., n\}$ be finite decreasing sequences and $\{\gamma_k \mid k = 0, 1, ..., n\}$ 0, 1, ..., n} be finite increasing sequence in [0, 1] such that $\alpha_i + \beta_i + \gamma_i \leq 3$, for i = 0, 1, 2, ..., n. Let A = (T_A, I_A, F_A) be a neutrosophic pythogorean set in K defined by $T_A(A_0) = \alpha_0$, $I_A(A_0) =$ β_0 , $F_A(A_0) = \gamma_0$, $T_A(A_k \setminus A_{k-1}) = \alpha_k$, $I_A(A_k \setminus A_{k-1}) = \beta_k$ and $F_A(A_k \setminus A_{k-1}) = \gamma_k$, for 0 < 1 $k \le n$. We claim that A = (T_A, I_A, F_A) is a neutrosophic pythogorean K-sub algebra of K. Let s, $t \in G$. If s, $t \in A_k \setminus A_{k-1}$, then it implies that $T_A(s) = \alpha_k = T_A(t)$, $I_A(s) = \beta_k = I_A(t)$ and $F_A(s)$ $= \gamma_k = F_A(t)$. Since each A_k is a K-sub algebra, it follows that $s \odot t \in A_k$. So that either $s \odot t \in A_k$. $A_k \setminus A_{k-1}$ or $s \odot t \in A_{k-1}$. In any case, we conclude that

 $T_A(s \odot t) \ge \alpha_k = \min\{T_A(s), T_A(t)\},\$ $I_A(s \odot t) \ge \beta_k = \min\{I_A(s), I_A(t)\},\$ $F_A(s \odot t) \le \gamma_k = \max\{F_A(s), F_A(t)\}.$

For i > j, if $s \in A_i \setminus A_{i-1}$ and $t \in A_i \setminus A_{j-1}$, then $T_A(s) = \alpha_i$, $T_A(t) = \alpha_j$, $I_A(s) = \beta_i$, $I_A(t) = \beta_j$ and $F_A(s) =$

 γ_i , $F_A(t) = \gamma_i$ and $s \odot t \in A_i$ because A_i is a K-sub algebra and $A_i \subset A_i$. It follows that

 $T_A(s \odot t) \ge \alpha_i = \min\{T_A(s), T_A(t)\},\$ $I_A(s \odot t) \ge \beta_i = \min\{I_A(s), I_A(t)\},\$ $F_A(s \odot t) \leq \gamma_i = \max\{F_A(s), F_A(t)\}.$

Thus, $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean K-sub algebra of K and all its non empty level subsets are level K-sub algebras of K.

Since $Im(T_A) = \{\alpha_0, \alpha_1, ..., \alpha_n\}, Im(I_A) = \{\beta_0, \beta_1, ..., \beta_n\}, Im(F_A) = \{\gamma_0, \gamma_1, ..., \gamma_n\}$. Therefore, the level K-sub algebras of $A = (T_A, I_A, F_A)$ are given by the chain of K-sub algebras:

 $\cup(T_A, \alpha_0) \subset \cup(T_A, \alpha_1) \subset ... \subset \cup(T_A, \alpha_n) = G,$ \cup (I_A, β_0) $\subset \cup$ (I_A, β_1) $\subset \dots \subset \cup$ (I_A, β_n) = G, $L(F_A, \gamma_0) \subset L(F_A, \gamma_1) \subset ... \subset L(F_A, \gamma_n) = G,$ respectively. Indeed,

 $U(T_A, \alpha_0) = \{s \in G \mid T_A(s) \ge \alpha_0\} = A_0,$ \cup (I_A, β_0) = { $s \in G \mid I_A(s) \ge \beta_0$ } = A₀, $L(F_A, \gamma_0) = \{s \in G \mid F_A(s) \le \gamma_0\} = A_0.$

Now we prove that $\cup(T_A, \alpha_k) = A_k, \cup (I_A, \beta_k) = A_k$ and $L(F_A, \gamma_k) = A_k$, for $0 < k \le n$. Clearly, $A_k \subseteq \cup(T_A, \alpha_k), A_k \subseteq \cup (I_A, \beta_k)$ and $A_k \subseteq L(F_A, \gamma_k)$. If $s \in \cup(T_A, \alpha_k)$, then $T_A(s) \ge \alpha_k$ and so $s \notin A_i$, for

i > k.

Hence $T_A(s) \in \{\alpha_0, \alpha_1, ..., \alpha_k\}$ which implies that $s \in A_i$, for some $i \leq k$ since $A_i \subseteq A_k$. It follows that s

 $\in A_k$. Consequently, $\cup(T_A, \alpha_k) = A_k$ for some $0 < k \le n$. Similar case can be proved for $\cup'(I_A, \alpha_k)$ β_k = A_k. Now if $t \in L(F_A, \gamma_k)$, then $F_A(s) \leq \gamma_k$ and so $t \notin A_i$, for some $j \leq k$. Thus, $F_A(s) \in \{\gamma_0, j\}$ $y_1, ..., y_k$ which implies that $s \in A_i$, for some $j \leq k$. Since $A_i \subseteq A_k$. It follows that $t \in A_k$. Consequently, $L(F_A, \gamma_k) = A_k$, for some $0 < k \le n$. Hence the proof.

IJCRT2110072 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org a592

2.1 Homomorphism of neutrosophic pythogorean *K*-algebras

Definition 2.5. Let $K_1 = (G_1, , \bigcirc, e_1)$ and $K_2 = (G_2, , \bigcirc, e_2)$ be two *K*-algebras and let ϕ be a function from K_1 into K_2 . If $B = (T_B, I_B, F_B)$ is a neutrosophic pythogorean *K*-sub algebra of K_2 , then the *preimage* of $B = (T_B, I_B, F_B)$ under ϕ is a neutrosophic pythogorean *K*-sub algebra of K_1 defined by $\phi^{-1}(T_B)(s) = T_B(\phi(s)), \phi^{-1}(I_B)(s) = I_B(\phi(s))$ and $\phi^{-1}(F_B)(s) = F_B(\phi(s))$, for all $s \in G_1$.

Theorem 2.5. Let $\phi : K_1 \to K_2$ be an epimorphism of *K*-algebras. If $B = (T_B, I_B, F_B)$ be a neutrosophic pythogorean *K*-sub algebra of K_2 , then $\phi^{-1}(B)$ be a neutrosophic pythogorean *K*-sub algebra of K_1 .

Proof. It is easy to see that $\phi^{-1}(T_B)(e) \ge \phi^{-1}(T_B)(s)$, $\phi^{-1}(I_B)(e) \ge \phi^{-1}(I_B)(s)$ and $\phi^{-1}(F_B)(e) \le \phi^{-1}(F_B)(s)$ for all $s \in G_1$. Let $s, t \in G_1$, then

 $\phi^{-1}(T_B)(s \odot t) = T_B(\phi(s \odot t))$ $\phi^{-1}(T_B)(s \odot t) = T_B(\phi(s) \odot \phi(t))$ $\phi^{-1}(T_B)(s \odot t) \ge \min\{T_B(\phi(s)), T_B(\phi(t))\}$ $\phi^{-1}(T_B)(s \odot t) \ge \min\{\phi^{-1}(T_B)(s), \phi^{-1}(T_B)(t)\},$ $\phi^{-1}(I_B)(s \odot t) = I_B(\phi(s \odot t))$ $\phi^{-1}(I_B)(s \odot t) \ge \min\{I_B(\phi(s)), I_B(\phi(t))\}$ $\phi^{-1}(I_B)(s \odot t) \ge \min\{\phi^{-1}(I_B)(s), \phi^{-1}(I_B)(t)\},$ $\phi^{-1}(F_B)(s \odot t) = F_B(\phi(s \odot t))$ $\phi^{-1}(F_B)(s \odot t) = F_B(\phi(s) \odot \phi(t))$ $\phi^{-1}(F_B)(s \odot t) \le \max\{F_B(\phi(s)), F_B(\phi(t))\},$ Hence $\phi^{-1}(B)$ is a neutrosophic pythogorean K-sub algebra of K₁.

Theorem 2.6. $\phi : K_1 \to K_2$ be an epimorphism of *K*-algebras. If $B = (T_B, I_B, F_B)$ is a neutrosophic pythogorean *K*-sub algebra of K_2 and $A = (T_A, I_A, F_A)$ is the *preimage* of B under ϕ . Then A is a neutrosophic pythogorean *K*-sub algebra of K_1 .

Proof. It is easy to see that $T_A(e) \ge T_A(s)$, $I_A(e) \ge I_A(s)$ and $F_A(e) \le F_A(s)$, for all $s \in G_1$. Now for any $s, t \in G_1$,

 $T_{A}(s \odot t) = T_{B}(\phi(s \odot t))$ $T_{A}(s \odot t) = T_{B}(\phi(s) \odot \phi(t))$ $T_{A}(s \odot t) \ge \min\{T_{B}(\phi(s)), T_{B}(\phi(t))\}$ $T_{A}(s \odot t) \ge \min\{T_{A}(s), T_{A}(t)\},$ $I_{A}(s \odot t) = I_{B}(\phi(s \odot t))$ $I_{A}(s \odot t) = I_{B}(\phi(s) \odot \phi(t))$ $I_{A}(s \odot t) \ge \min\{I_{B}(\phi(s)), I_{B}(\phi(t))\}$ $I_{A}(s \odot t) \ge \min\{I_{A}(s), I_{A}(t)\},$ $F_{A}(s \odot t) = F_{B}(\phi(s \odot t))$ $F_{A}(s \odot t) \le \max\{F_{B}(\phi(s)), F_{B}(\phi(t))\}$ $F_{A}(s \odot t) \le \max\{F_{A}(s), F_{A}(t)\}.$ Hence A is a neutrosophic pythogorean K-sub algebra of K₁.

1CH

Definition 2.6. Let a mapping $\phi : K_1 \to K_2$ from K_1 into K_2 of *K*-algebras and let $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean set of K_2 . The map $A = (T_A, I_A, F_A)$ is called the *preimage* of A under ϕ , if $T_A \phi(s) = T_A(\phi(s))$, $I_A \phi(s) = \mathbf{I}_A(\phi(s))$ and $F_A \phi = F_A(\phi(s))$ for all $s \in G_1$.

Proposition 2.3. Let $\phi : K_1 \to K_2$ be an epimorphism of *K*-algebras. If $A = (T_A, I_A, F_A)$ be a neutrosophic pythogorean *K*-sub algebra of K_2 , then $A^{\phi} = (T_A^{\phi}, I_A^{\phi}, F_A^{\phi})$ be a neutrosophic pythogorean *K*-sub algebra of K_1 . *Proof.* For any $s \in G_1$, we have

 $T_{A}^{\phi}(e_{1}) = T_{A}^{\phi}(\phi(e_{1})) = T_{A}(e_{2}) \ge T_{A}(\phi(s)) = T_{A}(s),$ $I_{A}^{\phi}(e_{1}) = I_{A}^{\phi}(\phi(e_{1})) = \mathbf{I}_{A}(e_{2}) \ge \mathbf{I}_{A}(\phi(s)) = \mathbf{I}_{A}(s),$ $F_{A}^{\phi}(e_{1}) = F_{A}^{\phi}(\phi(e_{1})) = F_{A}(e_{2}) \le F_{A}(\phi(s)) = F_{A}(s).$ For any $s, t \in G_{1}$, since A is a neutrosophic pythogorean K-sub algebra of K₂

 $T_{A} \stackrel{\phi}{} (s \odot t) = T_{A}(\phi(s \odot t))$ $T_{A} \stackrel{\phi}{} (s \odot t) = T_{A}(\phi(s) \odot \phi(t))$ $T_{A} \stackrel{\phi}{} (s \odot t) \ge \min\{T_{A}(\phi(s)), T_{A}(\phi(t)), \}$ $T_{A} \stackrel{\phi}{} (s \odot t) \ge \min\{T_{A}(s), T_{A}(s)\},$

 $I_{A}^{\phi} (s \odot t) = I_{A}(\phi(s \odot t))$ $I_{A}^{\phi} (s \odot t) = I_{A}(\phi(s) \odot \phi(t))$ $I_{A}^{\phi} (s \odot t) \ge \min \{ I_{A}(\phi(s)), I_{A}(\phi(t)) \}$ $I_{A}^{\phi} (s \odot t) \ge \min \{ I_{A}(s), I_{A}(s) \},$

 $F_{A}^{\phi} (s \odot t) = F_{A}(\phi(s \odot t))$ $F_{A}^{\phi} (s \odot t) = F_{A}(\phi(s) \odot \phi(t))$ $F_{A}^{\phi} (s \odot t) \leq \max\{F_{A}(\phi(s)), F_{A}(\phi(t))\}$ $F_{A}^{\phi} (s \odot t) \leq \max\{F_{A}(s), F_{A}(s)\}.$ Hence $A^{\phi} = (T_{A}, I_{A}, F_{A})$ is a neutrosophic pythogorean *K*-sub algebra of K₁.

Proposition 2.4. Let $\phi : K_1 \to K_2$ be an epimorphism of K-algebras. If $A^{\phi} = (T_A {}^{\phi}, I_A {}^{\phi}, F_A {}^{\phi})$ be a neutrosophic pythogorean K-sub algebra of K_2 , then $A = (T_A, I_A, F_A)$ is neutrosophic K-sub algebra of K_1 .

Proof. Since there exist $s \in G_1$ such that $t = \phi(s)$, for any $t \in G_2$

$$\begin{split} \mathbf{T}_{\mathbf{A}}(t) &= \mathbf{T}_{\mathbf{A}}(\phi(s)) = \mathbf{T} \ \phi(s)_{\mathbf{A}} &\leq \mathbf{T} \ \phi(e_1)_{\mathbf{A}} &= \mathbf{T}_{\mathbf{A}}(\phi(e_1)) = \mathbf{T}_{\mathbf{A}}(e_2), \\ \mathbf{I}_{\mathbf{A}}(t) &= \mathbf{I}_{\mathbf{A}}(\phi(s)) &= \mathbf{I}^{\ \phi(s)}_{\mathbf{A}} &\leq \mathbf{I}^{\ \phi(e1)}_{\mathbf{A}} &= \mathbf{I}_{\mathbf{A}}(\phi(e_1)) = \mathbf{I}_{\mathbf{A}}(e_2), \\ \mathbf{F}_{\mathbf{A}}(t) &= \mathbf{F}_{\mathbf{A}}(\phi(s)) = \mathbf{F}^{\ \phi(s)}_{\mathbf{A}} &\geq \mathbf{F}^{\ \phi(e1)}_{\mathbf{A}} &= \mathbf{F}_{\mathbf{A}}(\phi(e_1)) = \mathbf{F}_{\mathbf{A}}(e_2). \end{split}$$

for any $s, t \in G_2$, $u, v \in G_1$ such that $s = \phi(u)$ and $t = \phi(v)$. It follows that $T_A(s \odot t) = T_A(\phi(u \odot v))$ $T_A(s \odot t) = T_A(u \odot v)$ $T_A(s \odot t) \ge \min\{T_A \phi(u), T_A \phi(v)\}$ $T_A(s \odot t) \ge \min\{T_A(\phi(u)), T_A(\phi(v))\}$ $T_A(s \odot t) \ge \min\{T_A(s), T_A(t)\},$

 $\mathbf{I}_{\mathbf{A}}(s \odot t) = \mathbf{I}_{\mathbf{A}}(\phi(u \odot v))$ $\mathbf{I}_{\mathbf{A}}(s \odot t) = \mathbf{I}_{\mathbf{A}}(u \odot v)$

 $I_{A}(s \odot t) \ge \min\{I_{A}^{\phi}(u), I_{A}^{\phi}(v)\}$ $I_{A}(s \odot t) \ge \min\{I_{A}(\phi(u)), I_{A}(\phi(v))\}$ $I_{A}(s \odot t) \ge \min\{I_{A}(s), I_{A}(t)\},$

 $F_{A}(s \odot t) = F_{A}(\phi(u \odot v))$ $F_{A}(s \odot t) = F_{A}(u \odot v)$ $F_{A}(s \odot t) \leq \max\{F_{A}^{\phi}(u), F_{A}^{\phi}(v)\}$ $F_{A}(s \odot t) \leq \max\{F_{A}(\phi(u)), F_{A}(\phi(v))\}$ $F_{A}(s \odot t) \leq \max\{F_{A}(s), F_{A}(t)\}.$

Hence $A = (T_A, I_A, F_A)$ is a neutrosophic pythogorean *K*-sub algebra of K₂. From above two propositions we obtain the following theorem.

Theorem 2.7. Let $\phi : K_1 \to K_2$ be an epimorphism of *K*-algebras. Then $A^{\phi} = (T_A^{\phi}, I_A^{\phi}, F_A^{\phi})$ is a neutrosophic pythogorean *K*-sub algebra of K_1 if and only if $A = (T_A, I_A, F_A)$ is neutrosophic pythogorean *K*-sub algebra of K_2 .

Definition 2.7. A neutrosophic pythogorean K-sub algebra $A = (T_A, I_A, F_A)$ of a K-algebra K is called *characteristic* if $T_A(\phi(s)) = T_A(s)$, $I_A(\phi(s)) = I_A(s)$ and $F_A(\phi(s)) = F_A(s)$, for all $s \in G$ and $\phi \in Aut(K)$.

Definition 2.8. A *K*-sub algebra *S* of a *K*-algebra K is said to be *fully invariant* if $\phi(S) \subseteq S$, for all $\phi \in End(K)$, where End(K) is the set of all endomorphisms of a *K*-algebra K. A neutrosophic pythogorean *K*-sub algebra $A = (T_A, I_A, F_A)$ of a *K*-algebra K is called *fully invariant* if $T_A(\phi(s)) \leq T_A(s)$, $I_A(\phi(s)) \leq I_A(s)$ and $F_A(\phi(s)) \leq F_A(s)$, for all $s \in G$ and $\phi \in End(K)$.

Definition 2.9. Let $A_1 = (T_{A1}, I_{A1}, F_{A1})$ and $A_2 = (T_{A2}, I_{A2}, F_{A2})$ be neutrosophic pythogorean *K*-sub algebras of K. Then $A_1 = (T_{A1}, I_{A1}, A_1)$ is said to be the same type of $A_2 = (T_{A2}, I_{A2}, F_{A2})$ if there exist $\phi \in Aut(K)$ such that $A_1 = A_2 \circ \phi$, i.e., $T_{A1}(s) = T_{A2}(\phi(s))$, $I_{A1}(s) = I_{A2}(\phi(s))$ and $F_{A1}(s) = F_{A2}(\phi(s))$, for all $s \in G$.

Theorem 2.8. Let $A_1 = (T_{A1}, I_{A1}, F_{A1})$ and $A_2 = (T_{A2}, I_{A2}, F_{A2})$ be neutrosophic pythogorean *K*- sub algebras of K. Then $A_1 = (T_{A1}, I_{A1}, F_{A1})$ is a neutrosophic pythogorean *K*- sub algebra having the same type of $A_2 = (T_{A2}, I_{A2}, F_{A2})$ if and only if A_1 is isomorphic to A_2 .

Proof. Sufficient condition holds trivially so we only need to prove the necessary condition. Let $A_1 = (T_{A1}, I_{A1}, F_{A1})$ be a neutrosophic pythogorean *K*-sub algebra having same type of $A_2 = (T_{A2}, I_{A2}, I_{A2})$

F_{A2}). Then there exist $\phi \in Aut(K)$ such that T_{A1} (*s*) = T_{A2} ($\phi(s)$), I_{A1} (*s*) = I_{A2} ($\phi(s)$) and F_{A1} = F_{A2} ($\phi(s)$), for all $s \in G$. Let $f: A_1(K) \to A_2(K)$ be a mapping defined by $f(A_1(s)) = A_2$ ($\phi(s)$), for all $s \in G$, that is, $f(T_{AI}(s)) = T_{A2}(\phi(s))$, $f(I_{AI}(s)) = I_{A2}(\phi(s))$ and $f(F_{AI}(s)) = F_{A2}(\phi(s))$, for all $s \in G$.

Clearly, *f* is surjective. Also, *f* is injective because if $f(T_A I(s)) = f(T_A I(t))$, for all *s*, $t \in G$, then $T_A 2(\phi(s)) = T_A 2(\phi(t))$ and we have $T_A 1(s) = T_A 1(t)$. Similarly, $I_A 1(s) = I_A 1(t)$, $F_A 1(s) = F_A 1(t)$.

Therefore, f is a homomorphism, for $s, t \in G$

 $f(\mathbf{T}_{AI}(s \odot t)) = \mathbf{T}_{A2}(\phi(s \odot t)) = \mathbf{T}_{A2}(\phi(s) \odot \phi(t)),$ $f(\mathbf{I}_{AI}(s \odot t)) = \mathbf{I}_{A2}(\phi(s \odot t)) = \mathbf{I}_{A2}(\phi(s) \odot \phi(t)),$ $f(\mathbf{F}_{AI}(s \odot t)) = \mathbf{F}_{A2}(\phi(s \odot t)) = \mathbf{F}_{A2}(\phi(s) \odot \phi(t)).$

Hence $A_1 = (T_{A1}, I_{A1}, F_{A1})$ is isomorphic to $A_2 = (T_{A2}, I_{A2}, F_{A2})$. Hence the proof.

References

1. A. A. Agboola and B. Davvaz, Introduction to neutrosophic BCI/BCK-algebras, International Journal of Mathematics and Mathematical Sciences, Article ID 370267, (2015) 1–6. 2. M. Akram, K. H. Dar and P. K. Shum, Interval-valued (α , β)-fuzzy K-algebras, Applied Soft

Computing,**11** (1) (2011) 1213 – 1222.

3. M. Akram, B. Davvaz and F. Feng, *Intutionistic fuzzy soft K-algebras*, Mathematics in Computer Science, **7** (3) (2013) 353 – 365.

4. M. Akram, K. H. Dar, Y. B. Jun and E. H. Roh, *Fuzzy structures of K(G)-algebra*, Southeast Asian Bulletinof Mathematics, **31** (4) (2007) 625-637.

5. M. Akram and K. H. Dar, *Generalized fuzzy K-algebras*, VDM Verlag Dr. Miller, 2010, ISBN-13: 978-3639270952.

6. Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1) (1986) 87 - 96.

7. Bakhat, S. K. and P. Das, $(\in, \in \lor q)$ -fuzzy subgroup, Fuzzy Sets and Systems **80** (3) (1996) 359 – 368.

8.R.A. Borzooei, H. Farahani and M. Moniri, *Neutrosophic deductive filters on BL-algebras*, Journal ofIntelligent & Fuzzy Systems, **26**(6)(2014), 2993 – 3004.

9. K.H. Dar and M. Akram, On a K-algebra built on a group, Southeast Asian Bulletin of Mathematics, 29(1) (2005) 41-49.

10. K.H. Dar and M. Akram, *Characterization of a K*(*G*)-algebra by self maps, Southeast Asian Bulletin of Mathematics, **28** (4) (2004) 601 - 610.

11. K.H. Dar and M. Akram, *On K-homomorphisms of K-algebras*, International Mathematical Forum, **46**(2007) 2283 – 2293.

12. D. Coker and M. Demirci, *On intuitionistic fuzzy points*, Notes on intuitionistic fuzzy sets, 1(2) (1995)79-84.

13. Y. B. Jun, S.-Z. Song, F. Smarandache and H. Bordbar, *Neutrosophic quadruple BCK/BCI-algebras*, Axioms, **7** (2) (2018) 41.

14. P. M. Pu and Y. M. Liu, *Fuzzy topology, I. Neighbourhood structure of a fuzzy point and Moore-Smithconvergence*, Journal of Mathematical Analysis and Applications, **76** (2) (1980) 571 – 599.

15. F. Smarandache, *Neutrosophy neutrosophic pythogorean probability, set, and logic*, American Research Press, Rehoboth, USA, (1998).

16. H. Wang, F. Smarandache, Y.Q. Zhang and R. Sunderraman, *Single valued neutrosophic pythogorean sets*, Multispace and Multistruct, **4** (2010) 410–413.

17. C. K. Wong, *Fuzzy points and local properties of fuzzy topology*, Jounal of Mathematical Analysis and Applications, **46** (1974), 316–328.

18. X. Yuan, C. Zhang and Y. Ren, *Generalized fuzzy groups and many-valued implications*, Fuzzy sets and Systems, **138** (1) (2003) 205 – 211.

19. L.A. Zadeh, *Fuzzy sets*, Information and Control, **8**(3) (1965), 338 – 353.

