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Abstract 

We apply the notion of neutrosophic Pythagorean sets to K-algebras. We develop the concept of 

neutrosophic pythogorean K-sub algebras, and present some of their properties. Moreover, we study the 

behavior of valued neutrosophic pythogorean K-sub algebras under homomorphism.  
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Introduction 

A new kind of logical algebra, known as K-algebra, was introduced  by  Dar  and  Akram  [9].  A K-

algebra was built on a group G by adjoining the induced binary operation on G. The group G is 

particularly of the type in which each non-identity element is not of order 2.  This algebraic structure 

is, in general, non-commutative and non-associative with right identity element [5, 10, 11]. Akram et.al 

[2–4] introduced fuzzy K-algebras. They then developed fuzzy K-algebras with other researchers 

worldwide. The concepts and results of K-algebras have been broadened to the fuzzy setting frames by 

applying Zadeh’s fuzzy set theory and its generalizations, namely, interval- valued fuzzy sets, 

intuitionistic fuzzy sets,  interval-valued intuitionistic fuzzy  sets,  bipolar fuzzy  sets and vague sets. 

In handling information regarding various aspects of uncertainty, non-classical logic (a great 

extension and development of classical logic) is considered to be a more powerful technique than the 

classical logic. The non- classical logic has nowadays become a useful tool in computer science. 

Moreover, non-classical logic deals with fuzzy information and uncertainty. In 1998, Smarandache [15] 

introduced neutrosophic sets as a generalization of fuzzy sets [19] and intuitionistic fuzzy sets [6]. A 

neutrosophic set is identified by three functions called truth- membership (T ), indeterminacy-

membership (I) and falsity-membership (F ) whose values are real standard or non-standard  subset  of  

unit  interval  ]−0, 1+[,  where  −0  =  0      ϵ,  1+  =  1 + ϵ,  ϵ  is  an  infinitesimal  number. To apply 

neutrosophic  set in real-life problems more conveniently, Smarandache [15] and Wang et al. [16] 

defined single-valued neutrosophic sets which takes the value from the subset of [0, 1]. Thus, a single-

valued neutrosophic set is an instance of neutrosophic set, and can be used expediently to deal with real-

world problems, especially in decision support. Algebraic structures have a vital place with vast 

applications in various disciplines. Neutrosophic set theory has been applied to algebraic structures [1, 

8, 13]. In this research article, we introduce the notion of neutrosophic pythogorean K-subalgebra and 

investigate some of their properties. We discuss K-sub algebra in terms of level sets using neutrosophic 

pythogorean environment. We study the homomorphisms between the  neutrosophic pythogorean  K-

sub algebras.   We discuss  characteristic  K-sub algebras  and  fully  invariant -sub algebras.  
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Neutrosophic pythogorean K-algebras 

The concept of K-algebra was developed by Dar and Akram in [14]. 

Definition 2.1.  Let (G, ·, e) be a group in which each non-identity element is not of order 2.  Then a 

K- algebra is  a  structure  K =  (G, ·, ⊙, e)  on  a  group  G  in  which  induced  binary  operation              ⊙ 

:  G × G  → G  is  defined  by ⊙(x, y) = x ⊙ y = x.y−1 and satisfies the following axioms: 

(i) (x ⊙ y) ⊙ (x ⊙ z) = (x ⊙ ((e ⊙ z) ⊙ (e ⊙ y))) ⊙ x, 

(ii) x ⊙ (x ⊙ y) = (x ⊙ (e ⊙ y)) ⊙ x, 

(iii)(x ⊙ x) = e, 

(iv)(x ⊙ e) = x, 

(v) (e ⊙ x) = x−1, for all x, y, z ∈ G. 

Definition 2.2. [16] Let Z be a space of objects with a general element z ∈ Z. A neutrosophic 

pythogorean set A in Z is characterized by three membership functions, TA-truth membership 

function, IA-indeterminacy membership function and FA-falsity membership function, where      

TA(z), IA(z), FA(z) ∈ [0, 1], for all z ∈ Z. 

 

That is TA : Z → [0, 1], IA : Z → [0, 1], FA : Z → [0, 1] with no restriction on the sum of these three 

components. 

A can also be written as A = {< z, TA(z), IA(z), FA(z) > | z ∈ Z}. 

 

Definition 2.3. A neutrosophic pythogorean set A = (TA, IA, FA) in a K-algebra K is called a  

neutrosophic pythogorean K-sub algebra of K if it satisfy the following conditions: 

 

TA(s ⊙ t)  ≥ min{TA(s), TA(t)}, 

IA(s ⊙ t)  ≥ min{IA(s), IA(t)}, 

FA(s ⊙ t)≤ max{FA(s), FA(t)}, for all s, t ∈ G. 

Note that TA(e) ≥ TA(s), IA(e) ≥ IA(s), FA(e) ≤ FA(s), for all s ∈ G. 

Example 2.1.  Consider K = (G, ·, ⊙, e) be a   K-algebra, where G = {e, x, x2, x3, x4, x5, x6, x7, 

x8} is the cyclic group of order 9 and Caley’s table for ⊙ is given as: 

 

⊙ e x x2 x3 x4 x5 x6 x7 x8 

e e x8 x7 x6 x5 x4 x3 x2 x 

x x e x6 x7 x6 x5 x4 x3 x2 

x2 x2 x2 e x8 x7 x6 x5 x4 x3 

x3 x3 x3 x e x8 x7 x6 x5 x4 

x4 x4 x4 x2 x e x8 x7 x6 x5 

x5 x5 x5 x3 x2 x e x8 x7 x6 

x6 x6 x6 x4 x3 x2 x e x8 x7 

x7 x7 x7 x5 x4 x3 x2 x e x8 

x8 x8 x2 x6 x5 x4 x3 x2 x e 
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F ⊙ ≤ {F F } {F F } F 

′ 

We define a neutrosophic pythogorean set A = (TA, IA, FA) in  K-algebra as follows: 

TA(e) = 0.7, IA(e) = 0.6, FA(e) = 0.3, 

TA(s) = 0.1, IA(s) = 0.2, FA(s) = 0.5, for all s≠ e ∈ G. 

Clearly, A = (TA, IA, FA) is a neutrosophic pythogorean K -sub algebra of K. 

 

Example 2.2.  Consider K = (G, ·, ⊙, e) be a  K-algebra on dihedral group D4 given as G = {e, a, 

b, c, x, y, u, v}, where c = ab, x = a2, y = a3, u = a2b, v = a3b and Caley’s table for ⊙ is given 

as: 

 

We define a neutrosophic pythogorean set A = (TA, IA, FA) in K-algebra as follows: 

TA(e) = 0.8, IA(e) = 0.2, FA(e) = 0.2, 

TA(s) = 0.5, IA(s) = 0.1, FA(s) = 0.3, for all s≠ e ∈ G. 

By routine calculations, it can be verified that A is a neutrosophic pythogorean K-sub algebra ok K. 

 

Proposition 2.1.  If A = (TA, IA, FA) is a neutrosophic pythogorean K-sub algebra of K, then 

1.  (∀s, t ∈ G), (TA(s ⊙ t) = TA(t) ⇒ TA(s) = TA(e)). (∀s, t ∈ G)(TA(s) = TA(e)  

⇒ TA(s ⊙ t) ≥    TA(t)). 

2.  (∀s, t ∈ G), (IA(s ⊙ t) = IA(t) ⇒ IA(s) = IA(e)). (∀s, t ∈ G)(IA(s) = IA(e) 

        ⇒ IA(s ⊙ t) ≥  IA(t)). 

3.  (∀s, t ∈ G), (FA(s ⊙ t) = FA(t) ⇒ FA(s) = FA(e)). (∀s, t ∈ G)(FA(s) = FA(e)  

        ⇒ FA(s ⊙ t) ≤  FA(t)). 

Proof. 1. Assume that TA(s ⊙ t) = TA(t), for all s, t ∈ G. Taking t = e  and  using  (iii)  of  Definition  

2.1,  we have TA(s) = TA(s ⊙ e) = TA(e). Let for s, t ∈ G be such that TA(s) = TA(e). 

Then TA(s ⊙ t) ≥ min{TA(s), TA(t)} = min{TA(e), TA(t)} = TA(t). 

Again assume that IA(s ⊙ t) = IA(t), for all s, t ∈ G. Taking t = e and by (iii) of Definition 2.1, 

we have  IA(s) = IA(s ⊙ e) = IA(e). Also let s, t ∈ G be such that IA(s) = IA(e). Then IA(s 

⊙ t) ≥ min{IA(s), I(t)} = min{IA(e), IA(t)} = IA(t). 

Consider that FA(s ⊙ t) = FA(t), for all s, t ∈ G. Taking t = e and again by (iii) of Definition 

2.1, we have FA(s) = FA(s ⊙ e) = FA(e). Let s, t ∈ G be such that FA(s) = F(e). 

Then A(s t) max A(s),   A(t)  = max A(e),  A(t)   =   A(t). 

This completes the proof. 

 

Definition 2.4. Let A = (TA, IA, FA) be a neutrosophic pythogorean set in a K-algebra K and let 

(α, β, γ) ∈ [0, 1] × [0, 1] × [0, 1] with α + β + γ ≤ 3. Then level subsets of A are defined as: 

A(α,β,γ) = {s ∈ G | TA(s) ≥ α, IA(s) ≥ β, FA(s) ≤ γ} 

A(α,β,γ) = {s ∈ G | TA(s) ≥ α} ∩ {s ∈ G | IA(s) ≥ β} ∩ {s ∈ G | FA(s) ≤ γ} 

A(α,β,γ) = ∪(TA, α) ∩ ∪ (IA, β) ∩ L(FA, γ). are called (α, β, γ) -level subsets of neutrosophic 

pythogorean set A. 

 

 

 
 

b 

 

b      
b      

b 
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The set of all (α, β, γ) ∈ Im(TA) × Im(IA) × Im(IA) is known as image of A = (TA, IA, FA). 

The set A(α,β,γ) = {s ∈ G | TA(s) > α, IA(s) > β, FA(s) < γ} is known as strong (α, β, γ)- level 

subset of A. 

 

Proposition 2.2. If A = (TA, IA, FA) is a neutrosophic pythogorean K-sub algebra of K, then the 

level subsets  ∪(TA, α)  =  {s  ∈ G  | TA(s)  ≥ α} ,  ∪
′ 

(IA, β)  =  {s  ∈ G  | IA(s)  ≥ β} and  L(FA, 

γ)  =  {s  ∈ G  | FA(s)  ≤ γ} are k-sub algebras of K, for every (α, β, γ) ∈ Im(TA) × Im(IA) × Im(FA) 

⊆ [0, 1], where Im(TA), Im(IA) and Im(FA) are sets of values of T(A), I(A) and F(A), 

respectively. 

Proof.  Assume  that  A = (TA, IA, FA) is  a  neutrosophic pythogorean  K-sub algebra  of  K and  let  

(α, β, γ)  ∈ 

Im(TA) × Im(IA) × Im(FA)  be  such  that  ∪(TA, α)  ̸=  ∅, ∪
′ 

(IA, β)  ̸=  ∅ and  L(FA, γ)  ≠    ∅.   Now  

to  prove  that  ∪, ∪
′    

and  L  are  level    K-sub algebras.   Let  for  s, t  ∈ ∪(TA, α),  TA(s)  ≥ α  and  

TA(t)  ≥ α.   It  follows  from Definition 3.1 that TA(s ⊙ t) ≥ min{TA(s), TA(t)} ≥ α. It implies  that  s 

⊙ t ∈ ∪(TA, α).  Hence  ∪(TA, α)  is  a level   K-sub algebra of K.  Similar result can be proved for ∪
′ 

(IA, β) and L(FA, γ). 

 

Theorem 2.1. Let A = (TA, IA, FA) be a neutrosophic pythogorean set in K-algebra K.  Then 

A = (TA, IA, FA) is a neutrosophic pythogorean K-sub algebra of K if and only if A(α,β,γ) is a K-

sub algebra of K, for every (α, β, γ) ∈ Im(TA) × Im(IA) × Im(FA) with α + β + γ ≤ 3. 

 

Proof. Let A = (TA, IA, FA) be a pythogorean set in a K-algebra K. Assume that A = (TA, 

IA, FA) be a neutrosophic pythogorean K-sub algebra of K.  i.e., the following three conditions of 

Definition 3.1 hold. 

TA(s ⊙ t) ≥ min{TA(s), TA(t)}, 

IA(s ⊙ t) ≥ min{IA(s), IA(t)}, 

FA(s ⊙ t) ≤ max{FA(s), FA(t)}, for all s, t ∈ G. 

TA(e) ≥ TA(s), IA(e) ≥ IA(s), FA(e) ≤ FA(s), for all s ∈ G. 

Let for (α, β, γ) ∈ Im(TA) × Im(IA) × Im(FA) with α + β + γ ≤ 3 be such that A(α,β,γ) ≠ ∅.  Let s, t 

∈ A(α,β,γ) 

 

 

TA(s) ≥ α, TA(t) ≥ α , 

IA(s) ≥ β, IA(t) ≥ β , 

FA(s) ≤ γ, FA(t) ≤ γ . 

 

Without loss of generality we can assume that α ≤ α
′  

, β ≤ β
′  

and γ ≥ γ
′   

. It follows from Definition 

3.1 that 

TA(s ⊙ t) ≥ α =  min{TA(s), TA(t)}, 

IA(s ⊙ t) ≥ β =  min{IA(s), IA(t)}, 

FA(s ⊙ t) ≤ γ  =max{FA(s), FA(t)}. 

 

It implies that s ⊙ t ∈ A(α,β,γ).  So, A(α,β,γ) is a  K-sub algebra of K. 

Conversely, we suppose that A(α,β,γ) is a K-sub algebra of K. If the condition of the Definition 3.1 

is not true, then there exist u, v ∈ G such that 

 

 

be such that 
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2 

TA(u ⊙ v) < min  {TA(u), TA(v)}, 

IA(u ⊙ v) < min  {IA(u), IA(v)}, 

FA(u ⊙ v) > max{FA(u), FA(v)}. 

 

 

Taking 

α1 =  1 (TA(u ⊙ v) + min{TA(u), TA(v)}), 

β1 = 1 (IA(u ⊙ v) + min{IA(u), IA(v)}), 

γ1 = 1 (FA(u ⊙ v) + min{FA(u), FA(v)}). 

We have TA(u ⊙ v) < α1 < min{TA(u), TA(v)}, IA(u ⊙ v) < β1 < min{IA(u), IA(v)} and 

FA(u ⊙ v) > γ1 > max{FA(u), FA(v)}.    It  implies  that  u, v  ∈  A(α,β,γ)  and  u ⊙ v  ∈/  A(α,β,γ),  

a  contradiction.    Therefore,  the condition  of  Definition  3.1  is  true.   Hence  A =  (TA, IA, FA)  is  a   

neutrosophic pythogorean  k-sub algebra  of K. 

Theorem 2.2. Let A = (TA, IA, FA) be a neutrosophic pythogorean k-sub algebra and (α1, β1, γ1), 

(α2, β2, γ2) ∈ Im(TA) × Im(IA) × Im(FA) with αj + βj + γj ≤ 3 for j = 1, 2. Then A(α1,β1,γ1) 

= A(α2,β2,γ2) if (α1, β1, γ1) = (α2, β2, γ2). 

Proof. If (α1, β1, γ1) = (α2, β2, γ2), then clearly A(α1,β1,γ1) = A(α2,β2,γ2). 

Assume that A(α1,β1,γ1) = A(α2,β2,γ2). Since (α1, β1, γ1) ∈ Im(TA) × Im(IA) × Im(FA), there 

exist s ∈ G such that TA(s) = α1, IA(s) = β1 and FA(s) = γ1. It follows that s ∈ A(α1,β1,γ1) = 

A(α2,β2,γ2). So that α1 = TA(s) ≥ α2, β1 = IA(s) ≥ β2 and γ1 = FA(s) ≤ γ2. 

Also (α2, β2, γ2) ∈ Im(TA) × Im(IA) × Im(FA), there exist t ∈ G such that TA(t) = α2, IA(t) = β2 

and FA(t) = γ2. It follows that t ∈ A(α2,β2,γ2) = A(α1,β1,γ1). 

 So that α2 = TA(t) ≥ α1, β2 = IA(t) ≥ β1 and γ2 = FA(t) ≤ γ1. Hence (α1, β1, γ1) = (α2, β2, γ2). 

 

Theorem 2.3. Let H be a K-sub algebra of K-algebra K. Then there exist neutrosophic pythogorean 

K- sub algebra A = (TA, IA, FA) of K-algebra K such that A = (TA, IA, FA) = H,                                          

for some α, β ∈ (0, 1], γ ∈ [0, 1). 

Proof. Let A = (TA, IA, FA) be a neutrosophic pythogorean set in  K-algebra K given by 

 

𝑇𝐴(𝑠) = {
𝛼𝜖(0,1]     𝑖𝑓 𝑠𝜖𝐻.

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

𝐼𝐴(𝑠) = {
𝛽𝜖(0,1]     𝑖𝑓 𝑠𝜖𝐻.

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝐹𝐴(𝑠) = {
𝛾𝜖(0,1]     𝑖𝑓 𝑠𝜖𝐻.

0    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Let s, t ∈ G. If s, t ∈ H, then s ⊙ t ∈ H and so 

TA(s ⊙ t) ≥ min{TA(s), TA(t)}, 

IA(s ⊙ t) ≥ min{IA(s), IA(t)}, 

FA(s ⊙ t) ≤ max{FA(s), FA(t)}. 

But if s ∈/ H  or t ∈/ H, then TA(s) = 0 or TA(t), IA(s) = 0 or IA(t) and FA(s) = 0 or FA(t).  It 

follows that 

TA(s ⊙ t) ≥ min{TA(s), TA(t)}, IA(s ⊙ t) ≥ min{IA(s), IA(t)}, FA(s ⊙ t) ≤ max{FA(s), FA(t)}. 

Hence A = (TA, IA, FA) is a SVN K-sub algebra of K. Consequently A(α,β,γ) = H. 

The above Theorem shows that any K-sub algebra of K can be perceived as a level K-sub algebra 

of some neutrosophic pythogorean K-sub algebras of K. 
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′ 

Theorem 2.4.  

 

 

 Let  K  be a K-algebra. Given a chain of  K-sub algebras: A0 ⊂  A1 ⊂  A2⊂     ...    ⊂ An = G. Then 

there exist a neutrosophic pythogorean K-sub algebra whose level  K-sub algebras are exactly the  K-

sub algebras in this chain. 

Proof. Let {αk | k  = 0, 1, ..., n}, {βk  | k  = 0, 1, ..., n} be finite decreasing sequences and {γk  | k  = 

0, 1, ..., n} be finite increasing sequence in [0, 1] such that αi + βi + γi ≤ 3, for i = 0, 1, 2, ..., n. 

Let A = (TA, IA, FA) be a neutrosophic pythogorean set in K defined by TA(A0) = α0, IA(A0) = 

β0, FA(A0) = γ0, TA(Ak \ Ak−1) = αk, IA(Ak \ Ak−1)  =  βk  and  FA(Ak \ Ak−1)  =  γk,  for  0  <  

k  ≤ n.  We  claim  that  A =  (TA, IA, FA) is  a neutrosophic pythogorean  K-sub algebra  of  K .  Let  

s, t  ∈ G.   If  s, t  ∈ Ak \ Ak−1,  then  it  implies  that TA(s) = αk = TA(t), IA(s) = βk = IA(t) and FA(s) 

= γk = FA(t). Since each Ak is a  K-sub algebra, it follows that s ⊙ t ∈ Ak. So that either s ⊙ t ∈ 

Ak \ Ak−1 or s ⊙ t ∈ Ak−1. In any case, we conclude that 

 

TA(s ⊙ t) ≥ αk = min{TA(s), TA(t)}, 

IA(s ⊙ t) ≥ βk = min{IA(s), IA(t)}, 

FA(s ⊙ t) ≤ γk= max{FA(s), FA(t)}. 

 

For i > j, if s ∈ Ai \ Ai−1 and t ∈ Aj \ Aj−1, then TA(s) = αi, TA(t) = αj, IA(s) = βi, IA(t) = βj 

and FA(s) = 

γi, FA(t) = γj and s ⊙ t ∈ Ai because Ai is a K-sub algebra and Aj ⊂ Ai. It follows that 

 

TA(s ⊙ t) ≥ αi= min{TA(s), TA(t)}, 

IA(s ⊙ t) ≥ βi = min{IA(s), IA(t)}, 

FA(s ⊙ t) ≤ γi= max{FA(s), FA(t)}. 

Thus, A = (TA, IA, FA) is a neutrosophic pythogorean K-sub algebra of K and all its non empty 

level subsets are level K-sub algebras of K. 

Since Im(TA) = {α0, α1, ..., αn}, Im(IA) = {β0, β1, ..., βn}, Im(FA) = {γ0, γ1, ..., γn}. Therefore, 

the level K- sub algebras of A = (TA, IA, FA) are given by the chain of K-sub algebras: 

 

∪(TA, α0) ⊂ ∪(TA, α1) ⊂ ... ⊂ ∪(TA, αn) = G, 

∪’ (IA, β0) ⊂ ∪’ (IA, β1) ⊂ ... ⊂ ∪’ (IA, βn) = G, 

L(FA, γ0) ⊂ L(FA, γ1) ⊂ ... ⊂ L(FA, γn) = G, 

respectively. Indeed, 

 

 

∪(TA, α0) = {s ∈ G | TA(s) ≥ α0} = A0, 

∪ (IA, β0) = {s ∈ G | IA(s) ≥ β0} = A0, 

L(FA, γ0) = {s ∈ G | FA(s) ≤ γ0} = A0. 

Now we prove that ∪(TA, αk) = Ak, ∪
′ 

(IA, βk) = Ak  and L(FA, γk) = Ak, for 0 < k ≤ n. Clearly, 

Ak  ⊆ ∪(TA, αk), Ak  ⊆ ∪
′ 

(IA, βk)  and  Ak  ⊆ L(FA, γk).  If  s ∈ ∪(TA, αk),  then  TA(s) ≥ αk  and  

so  s ∈/  Ai,  for 

 

Hence TA(s) ∈ {α0, α1, ..., αk} which implies that s ∈ Ai, for some i ≤ k since Ai ⊆ Ak. It follows that s 

∈ Ak. Consequently,  ∪(TA, αk)  =  Ak  for  some  0  <  k  ≤ n.   Similar  case  can  be  proved  for  ∪
′ 

(IA, 

βk)  =  Ak.   Now  if t ∈ L(FA, γk), then FA(s) ≤ γk  and so t ∈/ Ai, for some j ≤ k.Thus, FA(s) ∈ {γ0, 

γ1, ..., γk} which implies that s ∈ Aj, for some j ≤ k. Since Aj ⊆ Ak. It follows that t ∈ Ak. 

Consequently, L(FA, γk) = Ak, for some 0 < k ≤ n. Hence the proof. 

i > k. 
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2.1 Homomorphism of neutrosophic pythogorean  K-algebras 

 

Definition  2.5.  Let  K1  =  (G1, ·, ⊙, e1)  and  K2  =  (G2, ·, ⊙, e2)  be  two    K-algebras  and  let  ϕ  

be  a  function from K1 into K2.  If B = (TB, IB, FB) is a neutrosophic pythogorean  K-sub algebra of 

K2, then the preimage of B = (TB, IB, FB) under ϕ is a neutrosophic pythogorean  K-sub algebra of 

K1 defined by ϕ−1(TB)(s) = TB(ϕ(s)), ϕ−1(IB)(s) = IB(ϕ(s)) and ϕ−1(FB)(s) = FB(ϕ(s)), for all 

s ∈ G1. 

Theorem 2.5. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If B = (TB, IB, FB) be a 

neutrosophic pythogorean K-sub algebra of K2, then ϕ−1(B) be a neutrosophic pythogorean K-sub 

algebra of K1. 

 

Proof.  It is easy to see that ϕ−1(TB)(e) ≥ ϕ−1(TB)(s), ϕ−1(IB)(e) ≥ ϕ−1(IB)(s) and ϕ−1(FB)(e) ≤ 

ϕ−1(FB)(s) for all s ∈ G1. Let s, t ∈ G1, then 

 

ϕ−1(TB)(s ⊙ t) = TB(ϕ(s ⊙ t)) 

ϕ−1(TB)(s ⊙ t) = TB(ϕ(s) ⊙ ϕ(t)) 

ϕ−1(TB)(s ⊙ t) ≥ min{TB(ϕ(s)), TB(ϕ(t))} 

ϕ−1(TB)(s ⊙ t) ≥ min{ϕ−1(TB)(s), ϕ−1(TB)(t)}, 

ϕ−1(IB)(s ⊙ t) = IB(ϕ(s ⊙ t)) 

ϕ−1(IB)(s ⊙ t) = IB(ϕ(s) ⊙ ϕ(t)) 

ϕ−1(IB)(s ⊙ t) ≥ min{IB(ϕ(s)), IB(ϕ(t))} 

ϕ−1(IB)(s ⊙ t) ≥ min{ϕ−1(IB)(s), ϕ−1(IB)(t)}, 

ϕ−1(FB)(s ⊙ t) = FB(ϕ(s ⊙ t)) 

ϕ−1(FB)(s ⊙ t) = FB(ϕ(s) ⊙ ϕ(t)) 

ϕ−1(FB)(s ⊙ t) ≤ max{FB(ϕ(s)), FB(ϕ(t))} 

ϕ−1(FB)(s ⊙ t) ≤ max{ϕ−1(FB)(s), ϕ−1(FB)(t)}. 

Hence ϕ−1(B) is a neutrosophic pythogorean K-sub algebra of K1. 

 

Theorem 2.6. ϕ : K1 → K2 be an epimorphism of K-algebras. If B = (TB, IB, FB) is  a   neutrosophic 

pythogorean K-sub algebra of K2 and A = (TA, IA, FA) is  the  preimage  of  B under  ϕ.  Then  A is  a  

neutrosophic pythogorean K-sub algebra of K1. 

Proof. It is easy to see that TA(e) ≥ TA(s), IA(e) ≥ IA(s) and FA(e) ≤ FA(s), for all s ∈ G1. Now 

for any s, t ∈ G1, 

 

TA(s ⊙ t) = TB(ϕ(s ⊙ t)) 

TA(s ⊙ t) = TB(ϕ(s) ⊙ ϕ(t)) 

TA(s ⊙ t) ≥ min{TB(ϕ(s)), TB(ϕ(t))} 

TA(s ⊙ t) ≥ min{TA(s), TA(t)}, 

IA(s ⊙ t) = IB(ϕ(s ⊙ t)) 

IA(s ⊙ t) = IB(ϕ(s) ⊙ ϕ(t)) 

IA(s ⊙ t) ≥ min{IB(ϕ(s)), IB(ϕ(t))} 

IA(s ⊙ t) ≥ min{IA(s), IA(t)}, 

FA(s ⊙ t) = FB(ϕ(s ⊙ t)) 

FA(s ⊙ t) = FB(ϕ(s) ⊙ ϕ(t)) 

FA(s ⊙ t) ≤ max{FB(ϕ(s)), FB(ϕ(t))} 

FA(s ⊙ t) ≤ max{FA(s), FA(t)}. 

Hence A is a neutrosophic pythogorean  K-sub algebra of K1.  
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Definition  2.6.  Let a mapping ϕ : K1 → K2  from K1  into K2  of  K-algebras and let A = (TA, 

IA, FA) be a neutrosophic pythogorean set of K2. The map A = (TA, IA, FA) is called the preimage of A 

under ϕ, if TA ϕ (s) = TA(ϕ(s)), IA
ϕ (s) = IA(ϕ(s)) and FA

ϕ = FA(ϕ(s)) for all s ∈ G1. 

 

Proposition 2.3. Let ϕ : K1 → K2 be an epimorphism of K-algebras. If A = (TA, IA, FA) be a 

neutrosophic pythogorean K-sub algebra of K2, then Aϕ = (TA ϕ, IA
ϕ , FA

ϕ ) be a neutrosophic 

pythogorean K-sub algebra of K1. 

Proof. For any s ∈ G1, we have 

TA ϕ (e1) = TA ϕ (ϕ(e1)) = TA(e2) ≥ TA(ϕ(s))  = TA (s), 

IA
ϕ (e1)  = IA

ϕ (ϕ(e1)) = IA(e2) ≥ IA(ϕ(s))  = IA(s), 

FA
ϕ (e1)= FA

ϕ (ϕ(e1)) = FA(e2) ≤ FA(ϕ(s))= FA(s). 

For any s, t ∈ G1, since A is a neutrosophic pythogorean  K-sub algebra of K2 

 

 TA ϕ (s ⊙ t) = TA(ϕ(s ⊙ t)) 

 TA ϕ (s ⊙ t) = TA(ϕ(s) ⊙ ϕ(t)) 

TA ϕ (s ⊙ t) ≥ min{TA(ϕ(s)), TA(ϕ(t  )   )} 

TA ϕ (s ⊙ t) ≥ min{TA (s), TA (s)}, 

 

 

 

 

 

 IA
ϕ (s ⊙ t) = IA(ϕ(s ⊙ t)) 

 IA
ϕ (s ⊙ t) = IA(ϕ(s) ⊙ ϕ(t)) 

 IA
ϕ (s ⊙ t) ≥ min{IA(ϕ(s)), IA(ϕ(t))} 

IA
ϕ (s ⊙ t) ≥ min{IA(s), IA(s)}, 

 

 FA
ϕ (s ⊙ t) = FA(ϕ(s ⊙ t)) 

 FA
ϕ (s ⊙ t) = FA(ϕ(s) ⊙ ϕ(t)) 

 FA
ϕ (s ⊙ t) ≤ max{FA(ϕ(s)), FA(ϕ(t))} 

FA
ϕ (s ⊙ t) ≤ max{FA(s), FA(s)}. 

Hence Aϕ = (TA, IA, FA) is a neutrosophic pythogorean  K-sub algebra of K1. 

 

Proposition 2.4.  Let ϕ : K1  → K2  be an epimorphism of  K-algebras.  If Aϕ = (TA ϕ, IA
ϕ , FA

ϕ ) 

be a neutrosophic pythogorean   K-sub algebra of K2, then A = (TA, IA, FA) is neutrosophic K-sub 

algebra of K1. 

Proof. Since there exist s ∈ G1 such that t = ϕ(s), for any t ∈ G2 

 

        

TA(t) = TA(ϕ(s)) = T ϕ(s)A ≤ T ϕ(e1)A = TA(ϕ(e1)) = TA(e2), 

IA(t) = IA(ϕ(s))   = I ϕ(s)
A ≤ I ϕ(e1)

A = IA(ϕ(e1)) = IA(e2), 

FA(t) = FA(ϕ(s))= F ϕ(s)
A ≥ F ϕ(e1)

A = FA(ϕ(e1))= FA(e2). 
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for any s, t ∈ G2, u, v ∈ G1 such that s = ϕ(u) and t = ϕ(v). It follows that 

TA(s ⊙ t) = TA(ϕ(u ⊙ v)) 

TA(s ⊙ t) = TA (u ⊙ v) 

TA(s ⊙ t) ≥ min{TA ϕ (u), TA ϕ (v)} 

TA(s ⊙ t) ≥ min{TA(ϕ(u)), TA(ϕ(v))} 

TA(s ⊙ t) ≥ min{TA(s), TA(t)}, 

 

IA(s ⊙ t) = IA(ϕ(u ⊙ v)) 

IA(s ⊙ t) = IA(u ⊙ v) 

  

IA(s ⊙ t) ≥ min{IA
ϕ (u), IA

ϕ (v)} 

IA(s ⊙ t) ≥ min{IA(ϕ(u)), IA(ϕ(v))} 

IA(s ⊙ t) ≥ min{IA(s), IA(t)}, 

 

FA(s ⊙ t) = FA(ϕ(u ⊙ v)) 

FA(s ⊙ t) = FA(u ⊙ v) 

FA(s ⊙ t) ≤ max{FA
ϕ (u), FA

ϕ (v)} 

FA(s ⊙ t) ≤ max{FA(ϕ(u)), FA(ϕ(v))} 

FA(s ⊙ t) ≤ max{FA(s), FA(t)}. 

Hence A = (TA, IA, FA) is a neutrosophic pythogorean K-sub algebra of K2. From above two 

propositions we obtain the following theorem. 

 

Theorem 2.7. Let ϕ : K1 → K2 be an epimorphism of  K-algebras. Then Aϕ = (TA ϕ, IA
ϕ , FA

ϕ ) is 

a neutrosophic pythogorean   K-sub algebra of K1 if and only if A = (TA, IA, FA) is neutrosophic 

pythogorean  K-sub algebra of K2. 

Definition  2.7.  A neutrosophic pythogorean  K-sub algebra A = (TA, IA, FA) of a   K-algebra 

K is called characteristic if TA(ϕ(s)) = TA(s), IA(ϕ(s)) = IA(s) and FA(ϕ(s)) = FA(s), for all 

s ∈ G and ϕ ∈ Aut(K). 

 

Definition 2.8.  A  K-sub algebra S of a  K-algebra K is said to be fully invariant if ϕ(S) 

⊆ S, for all ϕ ∈ End(K), where End(K) is the set of all endomorphisms of a K-algebra K. A 

neutrosophic pythogorean K-sub algebra A = (TA, IA, FA) of a  K-algebra K is called fully 

invariant if TA(ϕ(s)) ≤ TA(s), IA(ϕ(s)) ≤ IA(s) and FA(ϕ(s)) ≤ FA(s), for all s ∈ G and ϕ ∈ 

End(K). 

 

Definition 2.9. Let A1 = (TA1 , IA1 , FA1 ) and A2 = (TA2 , IA2 , FA2 ) be neutrosophic 

pythogorean K- sub algebras of K. Then A1 = (TA1 , IA1 , A1 )  is  said  to  be  the  same  type  of  

A2  =  (TA2 , IA2 , FA2 )  if  there exist ϕ ∈ Aut(K) such that A1 = A2 ◦ ϕ, i.e., TA1 (s) = TA2 

(ϕ(s)), IA1 (s) = IA2 (ϕ(s)) and FA1 (s) = FA2 (ϕ(s)), for all s ∈ G. 

 

Theorem 2.8. Let A1 = (TA1 , IA1 , FA1 ) and A2 = (TA2 , IA2 , FA2 ) be neutrosophic 

pythogorean K- sub algebras of K. Then A1  = (TA1 , IA1 , FA1 )  is  a    neutrosophic pythogorean  K-

sub algebra  having  the  same type of A2 = (TA2 , IA2 , FA2 ) if and only if A1 is isomorphic to 

A2. 

Proof. Sufficient condition holds trivially so we only need to prove the necessary condition. Let A1 = 

(TA1 , IA1 , FA1 ) be a neutrosophic pythogorean K-sub algebra having same type of A2 = (TA2 , IA2 , 
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FA2 ). Then there exist ϕ ∈ Aut(K) such that TA1 (s) = TA2 (ϕ(s)), IA1 (s) = IA2 (ϕ(s)) and 

FA1 = FA2 (ϕ(s)), for all s ∈ G . Let f : A1(K) → A2(K) be a mapping defined by f (A1 (s)) = A2 

(ϕ(s)), for all s ∈ G, that is, f (TA1 (s)) = TA2 (ϕ(s)), f (IA1 (s)) = IA2 (ϕ(s)) and f (FA1 (s)) = 

FA2 (ϕ(s)), for all s ∈ G. 

Clearly, f is surjective.  Also, f  is injective because if f (TA1 (s)) = f (TA1 (t )), for all s, t ∈ G, then 

TA2 (ϕ(s)) = TA2 (ϕ(t)) and we have TA1 (s) = TA1 (t). Similarly, IA1 (s) = IA1 (t), FA1 (s) 

= FA1 (t). 

Therefore, f is a homomorphism, for s, t ∈ G 

 

f (TA1 (s ⊙ t )) = TA2 (ϕ(s ⊙ t)) = TA2 (ϕ(s) ⊙ ϕ(t)) , 

f (IA1 (s ⊙ t )) = IA2 (ϕ(s ⊙ t)) = IA2 (ϕ(s) ⊙ ϕ(t)) , 

f (FA1 (s ⊙ t ))= FA2 (ϕ(s ⊙ t)) = FA2 (ϕ(s) ⊙ ϕ(t)). 

 

Hence A1 = (TA1 , IA1 , FA1 ) is isomorphic to A2 = (TA2 , IA2 , FA2 ). Hence the proof. 
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